中国媒体已掌握“炼金术”,将“危机”形容成“机遇”,将“灾难”演化为“盛事”,将“经济下行”表述为“增长潜力待释放”。

中国媒体已掌握“炼金术”,将“危机”形容成“机遇”,将“灾难”演化为“盛事”,将“经济下行”表述为“增长潜力待释放”。

相关推荐

封面图片

端传媒|没有母语的人:新闻审查下,“我们都是国家的宣传机器”(节选)

中国媒体已掌握“炼金术”,将“危机”形容成“机遇”,将“灾难”演化为“盛事”,将“经济下行”表述为“增长潜力待释放”。

封面图片

重新发明“炼金术” 只靠微生物就能发财了?

重新发明“炼金术”只靠微生物就能发财了?酸奶就是微生物发酵的功劳但其实在现代工业中,微生物能做的远不只满足人类的口腹之欲——在现代科技的帮助下,我们可以用微生物编织出我们身上的衣服(微生物纤维素)、熔铸出我们常用的工具(微生物塑料)、榨取出充当能源的各种油脂(微生物燃料),甚至可以帮助我们从不起眼的矿石中提黄金。微生物和黄金在常人的认知中,似乎是风马牛不相及的,那细菌是如何“炼金”的呢?炼金的本质是什么?要解答这个问题,我们需要先搞明白“炼金”的本质是什么。和铁、铜、铝等主要以化合物形式储藏在矿石中的金属不同,由于金的化学性质很不活泼,其不容易与环境中常见的氧气、二氧化碳、水乃至弱酸/弱碱反应,因此我们在岩矿中勘探到的黄金几乎都是纯净的金元素。但这些金散落于整个金矿层的其他岩石成分中,很少能够像挖化石一样直接开采出比较大的金块。因此,炼金实际上就是通过一些方法把这些分散的金从矿石中“抓”出来,再使其重新“结晶”成金块或金粒的过程。在实际操作中,往往需要大量金矿石才能提取出少量黄金,唐代诗人白居易的诗句“披砂复凿石,矻矻无冬春”描述的就是当时开采金银的不易。采出的金矿石,需要将其磨成细粉后在水中淘洗,利用金密度大,不容易随水流失的特点达到筛选富集黄金的目的。近现代炼金工业中会加入一些化学试剂来协助开采过程,化学试剂中就包括剧毒的氰化钠,因此传统的炼金工业是污染比较大的工业门类。微生物也能成为“炼金术师”黄金的开采和冶炼流程极为复杂,因此能直接发掘得到的自然金——狗头金,尤为珍贵,地质学家认为,这些狗头金应当是金矿石中的黄金微粒被溶解为金离子后二次结晶形成的,但具体的机制很长一段时间以来都没有被破解。自然金在极少数情况下会以狗头金形式出现图片来源:Wikipedia2006年,《科学》杂志上刊登了澳大利亚阿德莱德大学教授弗兰克·里斯(FrankReith)领导的一项研究,该研究通过分子生物学技术在澳大利亚自然金表面检测到了生物成分,并在其中鉴定出30种细菌的DNA,其中一种被称为金属罗尔斯通菌(Ralstoniametallidurans)的细菌在所有DNA阳性金粒上均有发现,且在自然金周围的土壤中并不存在。紧接着,研究人员在这种细菌的培养物中加入含有金离子的溶液,随后观察到了明显的金沉淀现象,由此证明这些细菌参与了自然金的形成。在之后的许多年里,来自世界其他地区的研究也支持了这一观点,并且在当地的自然金中发现了更多种类的“炼金微生物”。为什么微生物可以?令科学家们费解的是,金不是营养物质,不能为细菌提供能源,不参与细菌正常的生命活动,甚至对细菌来说,金离子还是有毒的,那“炼金微生物”们为什么会聚集到自然金表面生活,还要参与沉积黄金呢?事实上,自然界的各种生物与其说是生活在“最适合”的环境中,不如说是生活在“最有优势”的环境中,“炼金微生物”们之所以选择在金块上生活,并参与“建设”金块,就是因为只有它们能够耐受金的毒性,而其他微生物不会来和它们争夺生存空间和周围的营养物质。2018年,哈雷-维滕贝格马丁路德大学的微生物学家迪特里希·H·尼斯(DietrichH.Nies)在《金属组学》杂志上发表的文章揭示了“炼金微生物”的代表——耐金属贪铜菌(Cupriavidusmetallidurans)通过一种被称为“CopA”的酶将细胞外的金离子转化为难吸收的金颗粒,从而抵御金离子对自身细胞的侵害,在这个过程中产生了“炼金”的效果。单独把“CopA”分离出来投放到金溶液中时,金粒子也会产生。这项研究厘清了微生物参与天然金块形成过程的机制,受到了生物化学领域和金属冶金领域的特别关注。黄金表面的耐金属贪铜菌图片来源:Wikipedia结语“炼金微生物”们或许本来并不希望变得那么“金光闪闪”,但为了生存,它们选择定居在富含黄金的环境下,努力进化出了对抗黄金侵害的“盾牌”,这也使得在“微生物炼金”的秘密被揭开时,它们与对它们来说应当是“废物”的黄金一样受到瞩目。从另一个方面讲,“微生物炼金”的发现宣示着天然金块的冶炼似乎本就是微生物的作用,如果我们能将“微生物炼金”开发为一项能够大规模应用的实用技术,一定有助于解决当前炼金工业存在的问题,推动人类社会更加绿色可持续发展。参考资料[1]ReithF,RogersSL,McPhailDC,etal.Biomineralizationofgold:biofilmsonbacterioformgold[J].science,2006,313(5784):233-236.[2]BütofL,WiesemannN,HerzbergM,etal.Synergisticgold–copperdetoxificationatthecoreofgoldbiomineralisationinCupriavidusmetallidurans[J].Metallomics,2018,10(2):278-286.策划制作出品丨科普中国作者丨王锦鸿中国科学院微生物研究所监制丨中国科普博览责编丨林林、金禹奋(实习生)...PC版:https://www.cnbeta.com.tw/articles/soft/1382521.htm手机版:https://m.cnbeta.com.tw/view/1382521.htm

封面图片

碳的炼金术:麻省理工学院设计出革命性的二氧化碳转化技术

碳的炼金术:麻省理工学院设计出革命性的二氧化碳转化技术如果将这一工艺扩大到工业用途,将有助于从发电厂和其他来源清除二氧化碳,从而减少排放到大气中的温室气体数量。麻省理工学院的化学工程师们证明,通过使用DNA将催化剂(蓝色圆圈)拴在电极上,可以使二氧化碳转化为一氧化碳的效率大大提高。图片来源:麻省理工学院ChristineDaniloff革命性的脱碳技术"这将能够从排放物或溶解在海洋中的二氧化碳中提取二氧化碳,并将其转化为有利可图的化学品。"保罗-库克(PaulM.Cook)化学工程职业发展助理教授、该研究的资深作者阿里尔-弗斯特(ArielFurst)说:"这确实是一条脱碳之路,因为我们可以把二氧化碳这种温室气体转化为对化学生产有用的东西。"这种新方法利用电力进行化学转换,催化剂通过DNA链系在电极表面。DNA就像尼龙搭扣一样,将所有反应成分紧紧粘在一起,使反应比所有成分都漂浮在溶液中更有效率。Furst创办了一家名为HelixCarbon的公司,以进一步开发这项技术。麻省理工学院前博士后GangFan是这篇论文的第一作者,论文发表在《美国化学学会学报》(JournaloftheAmericanChemicalSocietyAu)上。其他作者包括:21岁的NathanCorbin博士、23岁的MinjuChung博士、麻省理工学院前博士后ThomasGill和AmrutaKarbelkar以及23岁的EvanMoore。分解二氧化碳要将二氧化碳转化为有用的产品,首先需要将其转化为一氧化碳。其中一种方法是用电,但这种电催化所需的能量过于昂贵。为了降低成本,研究人员尝试使用电催化剂,这种催化剂可以加快反应速度,减少系统所需的能量。用于该反应的一种催化剂是一类被称为卟啉的分子,这种分子含有铁或钴等金属,结构类似于血液中携带氧气的血红素分子。在这种电化学反应中,二氧化碳溶解在电化学装置内的水中,该装置包含一个驱动反应的电极。催化剂也悬浮在溶液中。然而,这种装置的效率并不高,因为二氧化碳和催化剂需要在电极表面相遇,而这种情况并不常见。为了使反应更频繁地发生,从而提高电化学转换的效率,Furst开始研究如何将催化剂附着在电极表面。DNA似乎是这种应用的理想选择。她说:"DNA的成本相对较低,你可以用化学方法对其进行修饰,并且可以通过改变序列来控制两条链之间的相互作用。它就像一种序列特异的魔术贴,具有非常强但可逆的相互作用,你可以对其进行控制。"为了将单股DNA连接到碳电极上,研究人员使用了两个"化学手柄",一个在DNA上,另一个在电极上。这些"化学手柄"可以折叠在一起,形成永久性的结合。然后将互补的DNA序列连接到卟啉催化剂上,这样当催化剂加入溶液中时,它就会可逆地与已经连接到电极上的DNA结合--就像魔术贴一样。系统建立后,研究人员向电极施加电势(或偏压),催化剂利用这种能量将溶液中的二氧化碳转化为一氧化碳。反应还能从水中产生少量氢气。催化剂磨损后,可以通过加热系统来破坏两条DNA链之间的可逆键,从而将其从表面释放出来,并用新的催化剂取而代之。突破性的电化学转换利用这种方法,研究人员能够将反应的法拉第效率提高到100%,这意味着进入系统的所有电能都直接进入化学反应,没有能量浪费。而当催化剂没有被DNA拴住时,法拉第效率只有40%左右。Furst说,这项技术可以很容易地扩大到工业用途,因为研究人员使用的碳电极比传统金属电极便宜得多。催化剂也很便宜,因为它们不含任何贵金属,而且电极表面只需要少量的催化剂。通过更换不同的催化剂,研究人员计划尝试用这种方法制造甲醇和乙醇等其他产品。由Furst创办的HelixCarbon公司也在致力于进一步开发该技术,以实现潜在的商业用途。...PC版:https://www.cnbeta.com.tw/articles/soft/1425921.htm手机版:https://m.cnbeta.com.tw/view/1425921.htm

封面图片

宇宙炼金术:韦伯望远镜首次窥见重元素碲的产生

宇宙炼金术:韦伯望远镜首次窥见重元素碲的产生研究人员利用各种望远镜观测到了一个明亮的伽马射线暴,揭示了中子星合并的过程,并探测到了稀有元素碲。这些发现源于千新星爆发,让人们对元素的产生有了更深入的了解,有望在未来有更先进的发现。由于詹姆斯-韦伯太空望远镜(JamesWebbSpaceTelescope)和一个高能事件的出现,天文学家现在离答案又近了一步:这是迄今为止探测到的第二亮的伽马射线暴,很可能是由两颗中子星合并引起的--它导致了一场被称为千新星的爆炸。利用韦伯望远镜惊人的灵敏度,科学家们首次从太空中捕捉到了千新星的中红外光谱,这标志着韦伯望远镜首次直接观察到了此类事件中的单个重元素。这幅由韦伯的近红外照相机(NIRCam)仪器拍摄的图像突出显示了GRB230307A的千新星和它的前宿主星系,以及它们所处的由其他星系和前景恒星组成的局域环境。这些中子星被踢出了它们的母星系,飞行了大约12万光年的距离,大约相当于银河系的直径,最终在几亿年后合并在一起。资料来源:NASA、ESA、CSA、STScI、AndrewLevan(IMAPP、Warw)一个科学家小组利用多个太空和地面望远镜,包括美国宇航局的詹姆斯-韦伯太空望远镜、美国宇航局的费米伽马射线太空望远镜和美国宇航局的尼尔-盖尔斯-斯威夫特天文台,观测到了一个异常明亮的伽马射线暴--GRB230307A,并确定了产生爆炸的中子星合并产生了这个伽马射线暴。韦伯还帮助科学家们在爆炸的余波中探测到了化学元素碲。元素周期表中与碲相近的其他元素--如地球上大部分生命所需的碘--也可能存在于千新星喷出的物质中。千新星是中子星与黑洞或另一颗中子星合并后产生的爆炸。这项研究的第一作者、荷兰拉德布德大学和英国华威大学的安德鲁-莱万(AndrewLevan)说:"距离德米特里-门捷列夫(DmitriMendeleev)写下元素周期表仅有150多年的时间,现在我们终于可以开始填补这些最后的空白,了解万物是如何形成的。"这幅图表比较了詹姆斯-韦伯太空望远镜观测到的GRB230307A的千新星光谱数据和千新星模型。两者都显示在光谱中与碲相关的区域有一个明显的峰值,红色阴影区域。碲在地球上比铂还要稀有,韦伯望远镜对碲的探测标志着它首次直接观察到来自千新星的单个重元素。资料来源:NASA、ESA、CSA、JosephOlmsted(STScI)虽然中子星合并长期以来一直被理论认为是产生一些比铁重得多的稀有元素的理想"高压锅",但天文学家之前在获取确凿证据时却遇到了一些障碍。千新星极为罕见,因此很难观测到这些事件。短伽玛射线暴(GRBs),传统上认为是那些持续时间少于两秒的伽玛射线暴,可能是这些不常发生的并合事件的副产品。(相比之下,长伽马射线暴可能会持续几分钟,通常与大质量恒星的爆炸性死亡有关)。GRB230307A的情况尤其引人注目。它是费米伽马射线太空望远镜在3月份首次探测到的,是50多年来观测到的第二亮的伽马射线暴,比费米观测到的典型伽马射线暴亮大约1000倍。它还持续了200秒,尽管起源不同,但仍被牢牢地归入了长持续伽马射线暴的类别。"这次爆裂属于长时间爆裂。它并不接近边界。但它似乎来自一颗正在合并的中子星,"论文合著者、路易斯安那州立大学费米小组成员埃里克-伯恩斯(EricBurns)补充说。Webb的NIRCam(近红外照相机)拍摄到的GRB230307A千新星和中子星的前宿主星系的图像,并配有罗盘箭头、比例尺和颜色键以供参考。向北和向东的罗盘箭头表示图像在天空中的方位。请注意,相对于地面地图上的方向箭头(从上往下看),天空中的北方和东方之间的关系(从下往上看)是颠倒的。刻度条以角秒为单位,角秒是天空中角度距离的量度。1弧秒等于1/3600弧度。(满月的角直径约为0.5度)天空中覆盖1弧秒的物体的实际大小取决于它与望远镜的距离。这幅图像显示的是不可见的近红外光波长,这些波长已被转换成可见光颜色。色键显示了采集光线时使用的NIRCam滤光片。每个滤光片名称的颜色就是用来表示通过该滤光片的红外光的可见光颜色。资料来源:NASA、ESA、CSA、STScI、AndrewLevan(IMAPP、Warw)地面和太空中的许多望远镜通力合作,使得科学家们在首次探测到天体爆发时就能拼凑出有关这一事件的大量信息。这是卫星和望远镜如何合作见证宇宙变化的一个范例。在首次探测后,包括尼尔-盖尔斯-斯威夫特天文台在内的一系列来自地面和太空的密集观测开始行动,在天空中精确定位源,并跟踪其亮度的变化情况。这些伽马射线、X射线、光学、红外线和无线电观测结果表明,光学/红外线对应物很微弱,演化很快,而且变得非常红--这是千新星的特征。意大利INAF-布雷拉天文台的研究合著者OmSharanSalafia说:"这种类型的爆炸非常迅速,爆炸中的物质也在迅速膨胀。随着整个云的膨胀,物质迅速冷却,其光的峰值在红外线中变得可见,并在几天到几周的时间尺度上变得更红。"在以后的时间里,从地面上研究这颗千新星是不可能的,但现在的条件对于韦伯的近红外相机(NIRCam)和近红外摄谱仪(NIRSpec)来说,却是观测这个动荡环境的绝佳条件。光谱中的宽线显示出物质是以高速喷射出来的,但有一个特征非常明显:碲发出的光,这种元素在地球上比铂还要稀有。韦伯望远镜高度敏感的红外功能帮助科学家们确定了产生千新星的两颗中子星的"老家":距离合并地点约12万光年的一个螺旋星系。在事件发生之前,它们曾经是两颗普通的大质量恒星,在它们的母星系螺旋星系中形成了一个双星系统。由于双星之间存在引力束缚,两颗恒星分别在两个不同的场合被发射到了一起:其中一颗恒星以超新星的形式爆炸,变成了一颗中子星,而另一颗恒星也紧随其后。在这种情况下,尽管发生了两次爆炸颠簸,这两颗中子星仍然是一个双星系统,并被踢出了它们的母星系。这对中子星穿越了大约相当于银河系直径的距离,几亿年后才合并在一起。由于太空望远镜和地面望远镜以互补的方式研究宇宙变化的机会越来越多,科学家们预计未来会发现更多的千新星,例如,虽然韦伯望远镜能比以往任何时候都更深入地窥视太空,但美国宇航局即将推出的南希-格雷斯-罗曼太空望远镜的非凡视场将使天文学家能够侦察这些爆炸发生的地点和频率。英国伯明翰大学本-贡佩兹(BenGompertz)是这项研究的合著者之一。他表示:"随着我们观测次数的增加,模型也会随之改进,光谱也会随时间发生更多变化。韦伯无疑为我们做更多的事情打开了大门,它的能力将彻底改变我们对宇宙的认识。"这些发现已发表在《自然》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1392633.htm手机版:https://m.cnbeta.com.tw/view/1392633.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人