MIT陈刚团队新研究登Science:迄今最好的半导体材料,比硅还强#抽屉IT

None

相关推荐

封面图片

华人科学家发现迄今为止“最佳半导体材料”#抽屉IT

封面图片

“超原子”材料击败硅 成为有史以来能量传输速度最快的半导体材料

“超原子”材料击败硅成为有史以来能量传输速度最快的半导体材料现在,哥伦比亚大学的科学家们发现了一种新型半导体材料,其性能似乎优于其他所有材料。这种材料被称为Re6Se8Cl2,由铼、硒和氯混合组成,这些原子聚集在一起,表现得像一个大原子--一种"超级原子"。这就是它的速度来源。在任何材料中,原子结构都会产生微小的振动,这些振动以量子粒子(称为声子)的形式传播,可以散射电子或激子等载能粒子。这种能量很快就会以热量的形式散失,而管理这种能量是设计电子芯片和系统的一个长期障碍。但Re6Se8Cl2有一个巧妙的特点。它的激子在受到声子撞击时不会散射,而是会与声子结合,从而产生另一种形式的准粒子--声激子-极子。这些激子仍然可以携带能量,但传播速度比普通激子慢得多--与直觉相反,这最终导致了比硅更快的速度。研究小组将其比作龟兔赛跑的老故事。电子在硅中的传播速度非常快,但它们往往会四处弹跳,这并不是最有效的传播路径。另一方面,Re6Se8Cl2中的极子速度较慢,而且不受其他声子的影响,因此它们移动得更远,时间也更稳定。实际上,研究小组发现Re6Se8Cl2中的极子移动速度是硅中电子移动速度的两倍。考虑到它们可以由光而不是电来控制,研究小组估计,使用这种材料制造的理论电子设备最终会比现有设备快六个数量级。这项研究的作者米兰-德洛尔(MilanDelor)说:"就能量传输而言,Re6Se8Cl2是我们所知的最好的半导体,至少到目前为止是这样。"遗憾的是,不要指望你的电脑很快就能用上这种材料制造的超快处理器--研究小组表示,这种特殊的混合物不太可能进入市场。对于消费品来说,铼实在是太稀有、太昂贵了。但在证明了这一概念后,研究人员相信,类似的、希望更便宜的材料可能会表现出同样的行为。德洛尔说:"我们现在可以开始预测还有哪些材料可能具有我们以前没有考虑过的这种特性。有一大批超原子和其他二维半导体材料具有有利于声学极子形成的特性。"这项研究发表在《科学》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1393651.htm手机版:https://m.cnbeta.com.tw/view/1393651.htm

封面图片

新研究:立方砷化硼有潜力成比硅更优良半导体材料

新研究:立方砷化硼有潜力成比硅更优良半导体材料(早报讯)科研人员日前发表在学术期刊《科学》的新研究显示,一种名为立方砷化硼的材料在实验室展现出比硅更好的导热性和更高的双极性迁移率,有潜力成为比硅更优良的半导体材料。新华社报道,硅是目前应用最广泛的半导体材料,然而硅作为半导体有两项不足。第一,硅不太善于传导热量,导致晶片温度总是过热,散热问题已经成为制约晶片性能的重要因素。第二,硅有较好的电子迁移率,但不具备足够好的空穴迁移率,后者对半导体性能也很重要。材料中带负电的电子离开后,留下的带正电的空位,被称作“空穴”。电子迁移率和空穴迁移率统称为双极性迁移率。科学家认为,立方砷化硼在理论上同时具有比硅更好的导热性,以及更高的双极性迁移率。早先实验已证实,该材料的热导率约是硅的10倍。来自麻省理工学院等美国院校的科研人员日前在《科学》杂志上发表研究进一步证实,立方砷化硼在实验中同时展现出更优良的导热性和双极性迁移率。研究人员表示,这可能是目前发现的最好的半导体材料。同期《科学》杂志也刊登了中国科学院联合美国休斯敦大学团队的相关研究成果。这项研究用不同的测量方法证实了立方砷化硼的高双极性迁移率,甚至在材料样本中的一些位置发现了比理论计算更高的双极性迁移率。参与研究的中国科学院国家纳米科学中心副研究员岳帅介绍说,双极性迁移率“决定了半导体材料的逻辑运算速度,迁移率越高则运算速度越快”。研究人员说,到目前为止立方砷化硼只在实验室规模进行了制备和测试,下一步的研究将围绕如何经济、大量地生产这种材料,从而真正促进半导体产业发展。发布:2022年7月26日1:59PM

封面图片

渺小的霸权:日本半导体材料的神话与现实#抽屉IT

封面图片

上海合晶上市首日跌超12%,报19.77元/股。公司主营半导体硅外延片的研发、生产、销售,并提供其他半导体硅材料加工服务。

封面图片

龟兔赛跑的量子版本:超原子半导体克服缺陷 全面超越硅基材料

龟兔赛跑的量子版本:超原子半导体克服缺陷全面超越硅基材料半导体,尤其是硅,是各种电子设备(如电脑、手机和您正在使用的设备)运行的基础。尽管用途广泛,但半导体也有其内在的限制。这些材料的原子结构会发生振动,从而产生称为声子的量子粒子。这些声子导致电子设备中负责传输能量和信息的粒子(电子或称为激子的电子-空穴对)发生散射。这种散射发生在极小的距离(纳米)和极短的时间跨度(飞秒)内,导致能量以热量形式耗散,并对信息传输速度造成限制。人们正在寻找更好的选择。哥伦比亚大学的化学家团队在《科学》杂志上撰文,他们的博士生杰克-图里亚格(JackTulyag)与化学教授米兰-德洛尔(MilanDelor)合作,描述了迄今为止速度最快、效率最高的半导体:一种名为Re6Se8Cl2的超原子材料。Re6Se8Cl2中的激子在与声子接触时不会发生散射,而是会与声子结合,产生新的准粒子,称为声激子-极子。虽然极子存在于许多材料中,但Re6Se8Cl2中的极子具有一种特殊的性质:它们能够进行弹道流动或无散射流动。这种弹道行为可能意味着有一天会出现速度更快、效率更高的设备。在研究小组进行的实验中,Re6Se8Cl2中的声激子-极子移动速度很快,是硅中电子移动速度的两倍,在不到纳秒的时间内就穿过了样品的几个微米。鉴于极子可以持续约11纳秒,研究小组认为激子-极子一次可以覆盖超过25微米的范围。由于这些准粒子是由光而不是电流和门控控制的,因此理论设备的处理速度有可能达到飞秒级--比目前千兆赫电子设备的纳秒级快六个数量级。所有这些都是在室温下实现的。德洛尔说:"就能量传输而言,Re6Se8Cl2是我们所知的最好的半导体,至少到目前为止是这样。"龟兔赛跑的量子版本Re6Se8Cl2是一种超原子半导体,由合作者泽维尔-罗伊(XavierRoy)在实验室中创造。超原子是束缚在一起的原子团,它们的行为就像一个大原子,但性质却与构建它们的元素不同。合成超原子是罗伊实验室的专长,也是哥伦比亚大学由国家科学基金会资助的材料研究科学与工程中心(MaterialResearchScienceandEngineeringCenteronPrecisionAssembledQuantumMaterials)的工作重点。德洛尔对通过超原子和哥伦比亚大学开发的其他独特材料控制和操纵能量传输很感兴趣。为此,该团队建立了超分辨率成像工具,可以捕捉以超小、超快尺度运动的粒子。当Tulyag第一次把Re6Se8Cl2带进实验室时,并不是为了寻找一种新的改良半导体--而是为了用一种原则上不应该传导太多东西的材料来测试实验室显微镜的分辨率。德洛尔说:"这与我们的预期正好相反。"我们看到的不是预期的缓慢运动,而是我们所见过的最快速度。"硅之所以是一种理想的半导体,是因为电子可以在其中快速移动,但就像俗话说的兔子一样,它们蹦跶得太厉害,最终实际上并不能跑得非常远、非常快。相对而言,Re6Se8Cl2中的激子速度非常慢,但正是因为它们速度如此之慢,才能够与同样缓慢移动的声子相遇并配对。由此产生的准粒子很"重",就像乌龟一样,缓慢而稳定地前进。由于沿途没有其他声子的阻碍,Re6Se8Cl2中的声激子-极子最终比硅中的电子移动得更快。资料来源:哥伦比亚大学杰克-图里亚格(JackTulyag)接下来的两年,Tulyag和他在德洛尔研究小组的同事们一直在研究Re6Se8Cl2为什么会表现出如此明显的行为,包括开发一种具有极高空间和时间分辨率的先进显微镜,可以直接成像极子在材料中形成和移动的过程。TimothyBerkelbach研究小组的博士生、理论化学家PetraShih也建立了一个量子力学模型,为观测结果提供了解释。德洛尔解释说,新的准粒子速度很快,但与直觉相反的是,它们是通过调整自己的节奏来达到这种速度的--这有点像龟兔赛跑的故事。硅之所以是一种理想的半导体,是因为电子可以在硅中快速移动,但就像传说中的兔子一样,它们蹦跳得太快,最终实际上并没有跑得很远很远。相对而言,Re6Se8Cl2中的激子速度非常慢,但正是因为它们速度如此之慢,才能够与同样缓慢移动的声子相遇并配对。由此产生的准粒子很"重",就像乌龟一样,缓慢而稳定地前进。由于沿途没有其他声子的阻碍,Re6Se8Cl2中的声激子-极子最终比硅中的电子移动得更快。半导体探索仍在继续与哥伦比亚大学正在探索的许多新兴量子材料一样,Re6Se8Cl2可以被剥离成原子薄片,这一特性意味着它们有可能与其他类似材料结合,以寻求更多独特的特性。不过,Re6Se8Cl2不太可能成为商业产品--分子中的第一种元素铼是地球上最稀有的元素之一,因此价格极其昂贵。不过,有了伯克尔巴赫小组的新理论,再加上图里亚格和德洛尔小组首先开发的直接跟踪极子形成和运动的先进成像技术,研究小组计划了解是否还有其他超原子竞争者能够打破Re6Se8Cl2的速度纪录。"这是唯一有人看到过持续室温弹道激子输运的材料。但是,我们现在可以开始预测还有哪些材料可能具有这种行为,而我们以前从未考虑过这些材料,"德洛尔说。"有一整套超原子和其他二维半导体材料具有有利于声学极子形成的特性。"参考文献:JakhangirkhodjaA.Tulyagankhodjaev、PetraShih、JessicaYu、JakeC.Russell、DanielG.Chica、MichelleE.Reynoso、HaowenSu、AthenaC.Stenor、XavierRoy、TimothyC.Berkelbach和MilanDelor的"范德华超原子半导体中的室温波状激子输运",2023年10月26日,《科学》。DOI:10.1126/science.adf2698编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1403195.htm手机版:https://m.cnbeta.com.tw/view/1403195.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人