曲阜师范大学复现韩国室温超导体结果:无零电阻特性#抽屉IT

None

相关推荐

封面图片

曲阜师范大学复现韩国室温超导体结果 无零电阻特性

曲阜师范大学复现韩国室温超导体结果无零电阻特性此前,在7月底,韩国的物理学家发布论文表示,他们已经发现了世界首个室温常压超导体——LK-99。他们表示:所有证据都可以证明,LK-99是世界首个室温常压超导体。LK-99的诞生意味着室温超导领域的重大突破,开启了一个全新的历史时代!如果室温超导体能够走入现实,那么将会对目前人类的能源领域产生巨大的改变,从源头上解决能耗问题,对于核聚变技术也会起到很大的推动作用。因此,此次韩国宣布发现了室温超导体,吸引了大量物理爱好者的关注,不少大学的实验室也开始了复现工作。不过,此次的“韩国室温超导体”也遭到了不少质疑。值得注意的是,此前,韩国室温超导研究团队的一名成员李硕裴在接受媒体采访时表示,他们的研究团队并未准备好发表论文,但团队中一名成员在未征得其他作者同意的情况下,就擅自发布了论文,团队目前已要求下架论文。李硕裴还表示,这项研究其实是针对今年4月发布在韩国期刊的超导体论文的补充,并且已向国际期刊申请审查。...PC版:https://www.cnbeta.com.tw/articles/soft/1374717.htm手机版:https://m.cnbeta.com.tw/view/1374717.htm

封面图片

【曲阜师范大学复现韩国室温超导体实验结果公布:无零电阻特性】8月2日晚间,曲阜师范物理工程学院教授刘晓兵向新闻记者表示,其团

封面图片

Nature发文:室温超导体将如何改变科学?

Nature发文:室温超导体将如何改变科学?答案取决于应用的领域,以及假设的材料是否还具有其他关键品质。但至少在一些科学领域中,尤其是那些使用强磁场的领域,更好的超导体可能会产生巨大的影响。超导体是一种在一定温度下能够无电阻传输电流的材料,因此不会产生废热。但所有已确认的超导体都只在低温或极端压力条件下或两者兼而有之的情况下才表现出这种特性。超导相变时热容(c(v),蓝色)和电阻率(ρ,绿色)的行为这种材料在实验室中已随处可见,因为研究人员能够使用一系列技术来降低它们的温度,尽管这会增加实验的成本和复杂性。但在日常应用中,超导体的低温要求是一道难以越过的门槛。一个极端的例子是大型强子对撞机(LargeHadronCollider,LHC),它是欧洲核子研究中心(CERN)的加速器。为了让质子在27公里的圆圈内运动,大型强子对撞机利用温度仅为1.9开尔文(-271.25ºC)的超导线圈产生强磁场。要做到这一点,首先需要一个包含96吨液氦的低温系统。这是世界上同类系统中规模最大的。欧洲核子研究中心磁体研究员、核工程师LucaBottura曾表示,“如果我们不需要极端温度,工程设计就会大大简化。”因此,能在室温下或接近室温工作的超导体将迅速彻底改变许多科学领域。但科学还没那么快到达这一目标。量子问题以量子计算机为例,这项新兴技术有望解决经典计算机无法完成的某些任务。而构建量子计算机的主要方法之一是将信息存储在超导材料环中。量子计算机这些超导材料被冷却到接近绝对零度(-273.15ºC),然后被装在昂贵的、类似于俄罗斯套娃的设备中,这种设备被称为稀释冰箱。稀释冰箱在基于超导体的量子计算机中,温度升高哪怕是零点几度,性能也会迅速下降,其原因与超导性无关。超导量子计算的共同发明人中村泰信(YasunobuNakamura)认为,量子计算对任何类型的噪声都极为敏感,而热振动则是一个主要敌人,它会产生虚假的“准粒子(quasiparticles)”。他提到,在100-150毫开尔文左右,就可以看到热激发准粒子的对抗效应。在其他情况下,实验本身可能不需要极度低温,但超导体仍需要保持比其转变为超导时(即Tc)还要低得多的温度。超导体的物理特性各不相同。但在许多应用中,尤其是在高磁场磁体中,有两个特性至关重要:临界电流和临界磁场。这是因为超导电性不但会在温度升高时丧失,而且还会在材料被推动承载超过一定量的电流或暴露在足够高的磁场中时丧失。麻省理工学院的低温系统中包裹着具有高转变温度的超导体.Credit:DavidL.Ryan/TheBostonGlobeviaGetty最重要的是,临界磁场和临界电流都与温度有关:温度越低,材料所能承受的电流和磁场就越大。因此,虽然超导体的Tc很高,但这并不意味着它可以在低于Tc的任何温度下使用。在许多应用中,超导体的性能会随着系统温度的降低而提高。幸运的是,目前发现的最好的超导体,包括一类叫做铜氧化物(或铜酸盐)超导体的超导体,只要保持足够低的温度,也能承受非常高的磁场。在现场四年前,位于佛罗里达州塔拉哈西的美国国家高磁场实验室(NationalHighMagneticFieldLaboratory,NHMFL)曾使用一种铜氧化物来获得稳定(非脉冲)磁场强度的记录。NHMFL的超导线圈能产生45.5特斯拉的磁场,但前提是它们必须保持在液氦中,即低于4.2开尔文。NHMFL首席科学家、物理学家LauraGreene说:“我们使用高-Tc超导体不是因为它们的Tc值高,而是因为它们的临界磁场高。”美国另一个国家实验室,位于新泽西州的普林斯顿等离子体物理实验室(PrincetonPlasmaPhysicsLaboratory,PPPL)的机械和电气工程师YuhuZhai说:“如果你想要一个高磁场磁体,那就在尽可能低的温度下运行它,因为那是你获得超导性真正力量的地方。”欧洲核子研究中心正在探索未来粒子对撞机的选择,该对撞机最终以比大型强子对撞机高七倍的能量粉碎质子,物理学家们希望能在这个范围内发现新的基本粒子。欧洲核子研究中心的大型强子对撞机与超级质子同步加速器的地图要达到这些更高的能量,粒子必须使用更高的场或沿着更长的加速器环路进行加速,或者两者兼而有之。为了建造这样一台机器,物理学家梦想在大型强子对撞机旁边挖掘一条长达100公里的环形隧道。但即使有这么大的环形隧道,像大型强子对撞机那样的超导磁体,即带有铌钛线圈的8特斯拉怪兽也无法产生所需的磁场,估计至少需要16到18特斯拉。对此,Bottura认为,“在这一点上,我们显然必须转向其他材料。”目前的高Tc超导体可以实现这一目标,但可能需要将其保持在液氦温度下。中国提出的类似加速器:即环形电子-正电子对撞机,也将使用高Tc超导磁体。北京高能物理研究所所长王贻芳表示,他们考虑高温超导材料已经有一段时间了,主要是铜酸盐和铁基材料。临界电流然而,铜氧化物的超导体也有其他缺点:它们是脆性的陶瓷材料,生产成本高昂,也很难将其制造为电缆。此外,王贻芳也提到,这种材料的临界电流也太低。而另一类铁基超导体原则上性能更好,成本也只有氧化铜的一半。Bottura和其他人正在研究一种全新加速器的可行性。通过用μ介子(类似于电子但质量大207倍的粒子)取代质子,对撞机可以研究与100公里长的质子-质子对撞机相同类型的物理学。但研究对撞机的环要小得多,甚至可以放入现有的大型强子对撞机隧道中,让μ介子绕一圈并不涉及强度特别高的磁场。但问题是产生具有适当特性的μ介子束,可能需要高达40特斯拉的磁铁。在这种强度下,问题不再是超导体,而是如何保持线圈的位置,因为电磁线圈内的电流往往会将磁铁推开。而在40特斯拉的条件下,即使是最坚固的钢材也无法承受机械应力。相反,磁体可能需要使用碳纤维等更坚固的材料。(NHMFL磁体对强度的要求没有那么严格,因为它需要在只有几厘米宽的空间内产生高磁场)。因此,在质子对撞机和μ介子对撞机中,超导体将会发挥巨大作用,但也可能出现其他工程挑战。融合之旅然而,在另一类旨在利用核聚变能的机器中,结构强度已经成为了严重的制约因素。长期以来,一种既定的聚变方法是使用排列成圆环形状,也被称为托卡马克(tokamak)的磁体来限制等离子体,将等离子体加热到数百万度,将氢的各种同位素碰撞在一起。世界上最大的实验性托卡马克名为ITER,正在法国南部建设,它将使用大型液氦来冷却磁体并产生接近12特斯拉的磁场。但根据Zhai的说法,工业和公共资助的实验室都在努力设计基于高Tc超导体的托卡马克磁体。原因有很多,如更高的磁场可能会大幅提高聚变反应堆燃烧燃料的速率,从而在原则上提高可产生的能量,但从聚变中提取能量的许多关键步骤尚未得到证明。工业努力增加高Tc磁性材料产量的一个积极结果是让它们的成本降低了,但它们仍比铌-钛材料昂贵得多。此外,Zhai还表示,托卡马克最终应该放弃液氦冷却。一方面是因为冷却系统复杂难建,另一方面是氦作为稀缺资源,难以建造数百个使用液氦的ITER大小的反应堆。Greene认为,寻找更好的超导材料是一项高风险的任务,迄今为止成功的案例寥寥无几。尽管如此,她还是说到:“这是一项艰苦的工作,也是一项令人兴奋的、正在改变世界的工作。”参考资料:https://www.nature.com/articles/d41586-023-02681-8...PC版:https://www.cnbeta.com.tw/articles/soft/1388387.htm手机版:https://m.cnbeta.com.tw/view/1388387.htm

封面图片

东南大学测LK-99零电阻成功 室温超导复现爆发

东南大学测LK-99零电阻成功室温超导复现爆发视频中,孙悦教授表示,团队在110K(-163°C)温度以下的常压条件下,成功观测到了LK-99的零电阻。这是一个很重要的证据,证明LK-99可能存在超导电性。不过,孙悦教授也强调称,目前的结果并不能证实LK-99就是室温超导,具体还需要进一步的探索和测量。虽然只是迈出了一小步,但丝毫不耽误B站网友们再次激动地冲进弹幕区合影打卡。与此同时,这项研究也再次登顶国外知名论坛热榜。华南理工大学物理学教授“洗芝溪”对此的评价是——“东南大学的结果非常震撼,甚至比华科大的结果还要震撼。”就在8月1日,华科大团队已经发现了LK-99材料的抗磁性。也就是在同一天,中国科学院金属研究所沈阳材料科学国家研究中心和美国劳伦斯伯克利国家实验室也都通过理论计算,间接证明了LK-99可能有超导性。这四个研究结合来看,韩国团队研究的置信度似乎又变高了很多。而如果在大量杂质及常压条件下,就能在110K观测到0电阻,那么只要再提高纯度/增大压力,或许有望得到真正的“室温超导”材料!如今看来,韩国团队的研究很可能让人类历史提前到达了跃迁点,如果这次点对了科技树,我们的想象力已然可以冲出地球、奔向宇宙了。为了得到常温常压超导,人类已经努力了100多年首次在110K以下观测到LK-99零电阻现象这项工作由侯强、魏伟、周鑫三名学生,以及孙悦教授和施智祥教授共同完成,并且已经上传到了arXiv上。实验中,团队共测量了6块样品,但只在一块样品中测量到了零电阻的现象。其他样品表现出的大多数是半导体的行为。对于测出零电阻的样品,团队也测量了迈斯纳效应(即完全抗磁性),但并没有观察到该效应。据此,团队猜测:如果样品中的零电阻现象是超导造成的话,那么它超导的组分还是比较低的。“零电阻”出现了?可以看到,从300K开始往低温测样品的电阻,通的电流是1mA。团队表示,因为样品本身有点脆,想做成规则形状的话比较难。因此为了节约时间,就把样品调成了一个不规则形状,用四引线法进行了电阻率测量。可以看到,在高温下,样品表现出了一些半导体的特性。而随着温度逐渐降低、达到110K时,样品的电阻基本上降到了0。具体来说,此时的电阻大约在10^-5到10^-6欧姆,在1mA电流下,此时的电压值大概在10^-8或10^-9伏特,这已经是所用测量仪器PBMS的极限了,所以可以认为观测到了零电阻。而在250K左右出现了一个很奇怪的电阻下降现象,目前原因还未知,孙悦教授推测说可能是电机做得不够干净。右图是加了磁场后对样品的超导转变进行了测量。可以看到,在磁场下,样品的超导转变比较稳定,转变温度只有一点点变化。不过也可以看出,样品在磁场下的超导转变也有一些奇怪。比如在低场的时候,随着磁场增加,样品的超导转变区域会更趋向于低温区。但在9特斯拉和7特斯拉时,这个区域又往高温区回来了一点,原因还无法解释。LK-99样品纯度高于韩国团队下图是X射线衍射结果,左边测量的是两种前驱物,右边测量的是团队做出的四个样品。对比后可以发现,样品的X射线结果和韩国团队的非常吻合。仔细看下图中,的峰非常小,所以该团队样品的纯度比韩国团队的还高一些。华工大佬:结果震撼人心华南理工大学“洗芝溪”表示,之所以说这次东南大学的结果甚至比华科的结果还要震撼,是因为现代磁性测量仪器灵敏度很高,能测到非常微小的磁信号。然而测出电阻信号,却需要样品连续均匀、电极做得很好、表面未氧化等诸多条件,测量难度大得多。因此,想要测出零电阻,过程非常费时费力,东南大学团队这么快就测出来,简直出人意料。来源:洗芝溪“洗芝溪”表示,这次东南大学实验数据的质量非常高,清晰地展示了电阻下降到0的全过程。可以说,110K的转变温度,已经远超预期了。第一个拿到诺奖的铜氧化物材料,转变温度也不过二十多k。至于6个样品只有1个测出了零电阻,应该是因为样品不均匀,掺杂比例的变化幅度比较大。来源:洗芝溪PPMS的仪器测量精度也无需纠结,测到了零电阻,那就是零电阻。而且,电阻温度降低,如果能有三四个数量级的下降,就可能存在超导了,而东南大学的结果甚至还要更好。或许从现在开始,我们对于室温超导的想象,可以再狂野一点。来源:洗芝溪而这一振奋人心的结果,也间接说明,韩国团队数据造假的可能性几乎为0了。来源:1781的小提琴知名UP主“图灵的猫”也分析称,这次实验基本证实了第一篇论文不是无稽之谈。对IBS理论和BRBCS理论都有一定支撑,甚至可追溯到上个世纪的苏联。此外,知友“ALLBLUEandgrey”表示:110K应该在现有的常压超导中也是不错的水平了,虽然没有超过现有的最高温度(135K/138K)。甚至,已经有网友畅想:人类以后再也不用卷了!美国研究中心:数据有误不过,对于东南大学的实验,美国马里兰大学凝聚态物质理论中心(CMTC)却指出,存在数字误画的可能。CMTC发文称,从线性比例上看,似乎没有过渡,这非常令人失望,也不是一个好兆头,因为人工合成物也隐约可见。CMTC表示,这些未经证实的预印本所展示的“物理学”简直是滑天下之大稽。原论文中没有明显的SC转变,T<T_c电阻率是铜的100倍。而东南大学研究也没有这一转变,只有仪器伪影。这点数据错误,还是京都大学固体量子物性研究室最先发现。“当纵轴设置为线性标度(原来是对数)时,出现了似乎是超导转变的急剧变化看不见。”同样,有知友同样指出,研究中电阻曲线跳变不够明显,虽然110k下电阻已经很小,但不能保证是零电阻。来源:JYNMN在B站视频的留言区中,也有网友提出质疑,认为电阻数据可信度有问题。来源:“暗黑森林中的虫子”西北大学研究:LK-99抗磁悬浮即是超导?就在8月2日,一篇西北大学研究人员的论文把“LK-99很可能具有超导性”这个结论,似乎又往前推进了一步。一篇由来自中国西北大学和奥地利固体状态物理研究所的研究人员发表的论文提出,LK-99的结构表明,它应该具有强“顺磁性”。如果它能呈现出磁悬浮现象的话,原因只可能是来源于超导性,而不是单独的“抗磁性”。在世界各个团队成功复现LK-99的磁悬浮状态后,严谨的观众都在强调,漂浮现象只能说明LK-99有“抗磁性”,还需要进一步证实,实验材料中的LK-99能在室温下体现出超导性。而这篇论文从理论上提供了一个依据,认为现在世界各国复现出来的磁悬浮现象,不可能是来源于“单独的抗磁性”,而根据现有的理论,只可能是来源于超导性。这篇论文认为LK-99的抗磁现象来源是超导性,因为如果它仅仅只有抗磁性的话,就和论文中的实验和计算相矛盾了。如果华中科技大学实验的抗磁现象是真的话,这篇论文就提供了一个证据证明了材料的超导性。如果大家对论文的有效性有怀疑的话,请注意其中一个作者的H-index为67。论文中的基本逻辑就像前一天爆出的美国国家自然实验室的论文一样,研究人员使用了一种叫做“密度泛函理论”(DFT)的计算方法,来研究铜取代磷灰石的性质。他们发现LK-99在费米能级(一个关键的能量等级)附近存在一些特殊的“能带结构”。这种类似的结果在很多已知的超导物质中,往往都代表着很高的转变温度。而且就像上图d中呈现的一样,这两个“窄能带”每个晶胞有3个电子。因此Cu基本上处于一个有效的电子配置为的状态下。而这种“窄能带”结构和的电...PC版:https://www.cnbeta.com.tw/articles/soft/1374781.htm手机版:https://m.cnbeta.com.tw/view/1374781.htm

封面图片

LK-99 室温超导体论文受到广泛质疑

LK-99室温超导体论文受到广泛质疑自26日,韩国科学家声称发现世界首个室温常压超导体LK-99后。已有许多业内人士对此提出了质疑。有人整理了一个。下面是一些质疑的声音。美国阿贡国家实验室的一位物理学家:“他们表现得像一群业余爱好者。他们对超导知之甚少,而且他们提供一些数据的方式也很可疑。”中国南京大学物理学教授闻海虎表示,,但委派了一位同事来做复现实验。但是,闻海虎还表示,即便是复现,也不能说明它是超导材料,除非判断超导的证据非常明确。印度国家物理实验室的VPSAwana博士在他的个人Facebook上发布了他们的结果称,两次。上周该团队的一位首席研究人员告诉韩国联合通讯社,韩国科学家团队宣布发现室温超导体的论文在网上发表。也许室温超导体这种只在科幻小说中才存在的材料要问世仍需要一些时间。

封面图片

世界顶尖实验室的计算模拟结果证明 LK-99 为室温超导体

世界顶尖实验室的计算模拟结果证明LK-99为室温超导体劳伦斯伯克利国家实验室使用了美国能源部的超级计算机进行了模拟,发现当铜取代磷灰石中的铅时引起了结构畸变,从而导致费米能级的孤立平带(已知高温超导体的常见标志)。所有计算结果与韩国实验结果都相似,晶格参数与实验结果相差1%,为这种掺铜铅磷灰石材料的室温超导性提供了有力的理论支持。劳伦斯伯克利国家实验室由加州大学运行,1931年建立至今共培养了15位诺贝尔奖得主,该实验室在物理和化学领域的影响力排名世界第一(NatureIndex)。https://arxiv.org/abs/2307.16892投稿:@ZaiHuaBot频道:@TestFlightCN

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人