Transformer在生物学上是否合理?MI团队用神经元和星形胶质细胞来构建#抽屉IT

None

相关推荐

封面图片

部分消毒剂和阻燃剂影响脑细胞发育少突胶质细胞包裹着神经元,能提高神经元传送信息的能力,还能形成大脑的白质(也称髓磷脂)。近期,美

封面图片

激活基底前脑中的星形胶质细胞可使小鼠长时间保持清醒

激活基底前脑中的星形胶质细胞可使小鼠长时间保持清醒华盛顿州立大学(WSU)的研究人员一直在研究星形胶质细胞在睡眠和觉醒中的作用,星形胶质细胞是胶质细胞的一种亚型,已知能调节大脑和身体的不同功能。他们最近在《神经科学杂志》(JournalofNeuroscience)上发表的论文显示,激活基底前脑(即支持调节睡眠、觉醒和体温的大脑区域)中的星形胶质细胞会使小鼠无限期地保持清醒,而不会表现出任何嗜睡的迹象。"我们的研究是对使我们困倦的脑细胞和脑回路进行的更广泛调查的一部分,"研究人员之一马科斯-弗兰克(MarcosFrank)告诉《医学快报》(MedicalXpress)。"科学家们将其称为'睡眠驱动力',而我们对睡眠驱动力还没有一个完整的解释。早在2009年,我们就发表了第一份证据,证明一类名为神经胶质星形胶质细胞的非神经元细胞会影响体内的睡眠驱动力。从那时起,我们就一直试图了解星形胶质细胞在睡眠和觉醒中的确切作用"。弗兰克和他的同事们最近工作的主要目的是更好地了解基底前脑中的星形胶质细胞如何影响睡眠、苏醒和整体睡眠驱动力。为此,研究人员使用了一系列先进的遗传和化学技术,以可逆的方式改变小鼠基底前脑中星形胶质细胞的活化。弗兰克解释说:"我们使用了一种'化学遗传'技术来表达哺乳动物大脑中通常不表达的小分子受体。当被一种特殊药物激活时,这种受体会激活星形胶质细胞。我们将这种方法与大脑活动和运动活动的标准测量方法结合起来,这些方法共同告诉我们动物是醒着还是睡着了。"为了确保他们观察到的效果与化疗基因激活星形胶质细胞具体相关,研究小组还进行了几次对照实验,在类似的情况下观察相同的小鼠,但它们的星形胶质细胞没有被激活。最终,研究人员观察到,基底前脑星形胶质细胞被激活后,小鼠连续数小时保持清醒,没有表现出任何典型的嗜睡迹象。弗兰克说:"小鼠似乎是在没有任何'代价'的情况下保持清醒的,换句话说,就是没有增加睡眠动力。这出乎我们的意料,并具有若干重要意义。首先,我们的研究结果对我们的睡眠需求是由清醒本身产生的这一观点提出了质疑。相反,它可能需要亚型脑细胞之间进行一系列特定的相互作用。"这个研究小组最近收集的研究结果凸显了一些神经元-神经胶质细胞回路在调节睡眠驱动力和觉醒方面的关键作用。未来,这些发现可能会为有关睡眠神经基础的激动人心的新发现铺平道路,也有可能使人们能够创造出让人长时间保持清醒和清醒的药物。弗兰克补充说:"想象一下,在这个世界上(如果将其应用到人类身上),轮班工作的人不会犯困,宇航员、飞行员、士兵、医疗保健提供者、急救人员可以长时间不睡觉。虽然我们还处于起步阶段,但如果真的实现了这一目标,将永远改变人类的极限。我们下一步的工作重点是了解当我们激活基底前脑星形胶质细胞时,在一系列事件中接下来会发生什么。这会导致周围神经元发生变化吗?在健康的大脑中,通常是什么控制着这一过程,这种星形胶质细胞激活的觉醒与正常的觉醒是否相同?这些都是我们希望在今后的研究中回答的问题。"...PC版:https://www.cnbeta.com.tw/articles/soft/1379697.htm手机版:https://m.cnbeta.com.tw/view/1379697.htm

封面图片

将大脑免疫细胞转化为神经元有助于中风后的康复

将大脑免疫细胞转化为神经元有助于中风后的康复中风或其他脑血管疾病导致脑部血流不畅后,神经元要么受损,要么死亡,造成特有的生理和心理缺陷。现在,日本九州大学的研究人员将大脑的主要免疫细胞小胶质细胞转化为神经元,从而恢复了受中风影响的小鼠的运动功能。该研究的通讯作者中岛健一说:"当我们被割伤或骨折时,我们的皮肤和骨骼细胞可以复制,从而治愈我们的身体。但我们大脑中的神经元却不容易再生,因此损伤往往是永久性的。因此,我们需要找到新的方法来安置失去的神经元。"研究人员从之前的研究中得知,在健康小鼠的大脑中,小胶质细胞可以被诱导发育成神经元。中风后,负责清除受损或死亡脑细胞的小胶质细胞向受伤部位移动并迅速复制。该研究的第一作者入江隆说:"小胶质细胞数量丰富,而且正好位于我们需要它们的地方,因此它们是理想的转化目标。"研究人员通过暂时阻断右侧大脑中动脉诱导小鼠中风,大脑中动脉是大脑中的主要血管,通常与人类中风有关。一周后,研究人员观察到小鼠的运动功能出现障碍,纹状体中的神经元明显减少,而纹状体是大脑中参与决策、行动规划和运动控制的区域。他们使用慢病毒--一种用作病毒载体的亚类逆转录病毒--将DNA插入中风损伤部位的小胶质细胞。DNA中含有产生NeuroD1的指令,NeuroD1是一种诱导神经元转换的蛋白质。在随后的几周里,这些细胞发育成了神经元。在小胶质细胞中产生NeuroD1蛋白可诱导它们发育成神经元(红色),减少神经元缺失区域(暗斑)。DNA植入三周后,小鼠的运动功能得到改善。到八周时,新诱导的神经元已成功融入大脑回路。当研究人员移除新神经元时,运动功能的改善消失了,这证实了新神经元对小鼠的康复做出了直接贡献。中岛说:"这些结果很有希望。下一步是测试NeuroD1是否也能有效地将人类小胶质细胞转化为神经元,并确认我们将基因插入小胶质细胞的方法是安全的。"由于小鼠是在中风后的急性期接受治疗的,此时小胶质细胞已经迁移到损伤部位,因此研究人员下一步计划观察他们是否能在后期阶段让小鼠产生康复效果。该研究发表在《美国国家科学院院刊》(PNAS)上。...PC版:https://www.cnbeta.com.tw/articles/soft/1391667.htm手机版:https://m.cnbeta.com.tw/view/1391667.htm

封面图片

干细胞揭示了PTSD患者的神经元是如何对压力做出反应的

干细胞揭示了PTSD患者的神经元是如何对压力做出反应的该研究于10月20日发表在《NatureNeuroscienc》上,是首个使用诱导多能干细胞模型来研究创伤后应激障碍的研究。PTSD可在严重创伤后发展,对退伍军人和平民来说都是一个巨大的公共健康问题。根据美退伍军人事务部下属的国家创伤后应激障碍中心的数据,每100个美国人中约有6人在其生命中的某个阶段会有创伤后应激障碍。在美国,约有1200万成年人在某一年中患有PTSD。然而,遗传和环境因素对个人临床结果的贡献程度仍是未知的。为了填补这一信息空白,研究小组研究了从Bronx的JamesJPeters退伍军人事务医疗中心招募的39名患有和不患有PTSD的战斗退伍军人的群组。退伍军人进行了皮肤活检,他们的皮肤细胞被重新编程为诱导多能干细胞。伊坎西奈山精神病学和神经科学教授、JamesJPeters退伍军人事务医疗中心心理健康主任、论文资深作者RichaelYehuda博士说道:“将细胞重编程为诱导多能干细胞,就像把细胞带回它们还是胚胎的时候,并且有能力生成身体的所有细胞。然后这些细胞可以分化成跟该人的脑细胞在发生创伤前具有相同属性的神经元,从而来改变其功能方式。来自这些神经元的基因表达网络反映了由遗传和非常早期的发育贡献导致的早期基因活动,因此它们是‘战斗前’或‘创伤前’基因表达状态的反映。”研究人员KristenBrennand博士表示:“两个人可以经历同样的创伤,但他们不一定都会发展成创伤后应激障碍。在患有和不患有PTSD的人的脑细胞中进行这种类型的建模有助于解释遗传学如何使某人更容易受到创伤后应激障碍的影响。”据悉,Brennand是这项研究的共同领导者。为了模仿引发PTSD的压力反应,科学家们将诱导多能干细胞衍生的神经元暴露在压力激素氢化可的松中,这是人体自身皮质醇的合成版本,被用作“战斗或逃跑”反应的一部分。Yehuda博士表示:“向这些细胞添加应激激素模拟了战斗的生物效应,这使我们能够确定不同的基因网络是如何对脑细胞中的应激暴露做出反应的。”通过利用基因表达分析和成像,科学家们发现患有PTSD的人的神经元对这种药理学触发器过度敏感。另外,科学家们还能确定在暴露于压力荷尔蒙后反应不同的特定基因网络。受PTSD影响的人的细胞内部迄今为止,大多数关于PTSD的类似研究都使用了病人的血液样本。然而由于创伤后应激障碍扎根于大脑,科学家们需要一种方法来捕捉易受该障碍影响的个人的神经元如何受到压力的影响。因此,该团队选择使用干细胞,因为它们具有独特的条件,可以提供一个针对病人的、非侵入性的大脑窗口。Brennand博士说道:“你不能轻易地伸手到一个活人的大脑中拉出细胞,所以干细胞是我们检查神经元在病人身上如何表现的最好方法。”NYSCF科学家使用他们的可扩展、自动化、机器人系统--NYSCF全球干细胞阵列--创建干细胞,然后从PTSD患者身上提取谷氨酸神经元。谷氨酸神经元帮助大脑发送兴奋性信号,以前曾跟PTSD存有关联。“由于这是第一个使用干细胞模型研究PTSD的研究,所以研究大量的个体是很重要的,”共同领导这项研究的DanielPaull博士说道,“在这项研究的规模上,自动化是至关重要的。通过阵列,我们可以制作标准化的细胞,从而在众多个体之间进行有意义的比较,以指出可能对发现新疗法至关重要的关键差异。”利用受压PTSD细胞的特征进行新治疗研究小组的基因表达分析揭示了一组基因,这些基因在接触应激激素后在易受PTSD的神经元中特别活跃。“重要的是,我们在神经元中发现的基因特征在患有PTSD的死者的大脑样本中也很明显,这告诉我们,干细胞模型正在提供一个相当准确的反映在世病人大脑中发生的情况,”Paull博士说道。此外,PTSD和非PTSD细胞对压力的反应的区别,这可以为预测哪些人患PTSD的风险较高提供信息。Paull博士继续说道:“我们的发现真正令人兴奋的是它们为加速诊断和治疗创伤后应激障碍提供了机会。重要的是,拥有一个强大的干细胞模型,为‘菜’中的药物筛选提供了一个理想的途径,甚至跨越不同的病人群体。”“我们正在努力寻找已经被批准的药物,可以扭转我们在神经元中看到的超敏性,”Brennad博士补充道,“这样一来,我们发现的任何药物都将有最快的途径来帮助病人。”研究人员计划继续利用他们的诱导多能干细胞模型进一步研究这项研究指出的遗传风险因素,另外还将研究创伤后应激障碍如何影响其他类型的脑细胞从而帮助扩大治疗发现的机会。一项由团队科学促成的研究Brennad博士说道:“这项研究的特别之处在于,它只能由这个小组完成。它涉及到这个领域中一些最好的临床医生、令人难以置信的干细胞生物学家和令人惊叹的精神病学遗传学家。每个小组都有独特的专业知识,这些都不可能由任何一个小组单独完成。”“这项研究是团队科学力量的真正证明,”Paull博士补充道,“当研究人员联合起来时,我们能够提出更大的问题,做出更大的发现,并希望能够为患者带来更大的改变。”NYSCF临时CEODerrickRossi博士说道:“作为与世界级科学家合作的这一里程碑式研究的一部分,NYSCF从PTSD患者身上生成了有史以来第一个诱导多能干细胞模型,我们感到非常自豪。这项合作工作强调了干细胞模型在研究和揭开挑战性疾病方面的独特价值,以及发现可能导致急需治疗的创新策略。”...PC版:https://www.cnbeta.com.tw/articles/soft/1331363.htm手机版:https://m.cnbeta.com.tw/view/1331363.htm

封面图片

用人体细胞制成的微型生物机器人无需修改DNA就能促进神经元生长

用人体细胞制成的微型生物机器人无需修改DNA就能促进神经元生长研究人员利用人体气管细胞制造出了微小的生物机器人,它们可以自行移动并协同工作,促进受损神经元的愈合,而无需修改基因。这种微型机器人有可能改变再生医学和疾病治疗。此前,塔夫茨大学与佛蒙特大学合作,利用青蛙胚胎细胞创造了一种多细胞生物机器人,名为"Xenobot",能够导航、记录信息和自我修复。当时,研究人员还不确定这些能力是否因为Xenobot是用青蛙细胞制造的,或者是否可以用其他物种的细胞制造生物机器人。在目前的研究中,研究人员希望了解是否可以将细胞从其自然环境中移除,并重新组合成不同的"身体计划",以执行其他功能。他们发现,使用成人人类细胞可以制造出机器人,无需进行基因改造,而且能力更强。该研究的第一作者和通讯作者吉泽姆-古穆斯卡亚(GizemGumuskaya)说:"我们想探究细胞除了在体内创建默认功能外还能做些什么。通过重新编程细胞之间的相互作用,可以创建新的多细胞结构,这就好比石头和砖块可以排列成不同的结构元素,如墙壁、拱门或柱子。"他们首先从人体气管表面提取气管细胞,然后开发出一种新的方案,利用支气管上皮祖细胞现有的能力,形成带有纤毛的多细胞球体,纤毛是一种微小的毛发状结构,可以振动移动。他们修改了这一过程,以产生纤毛包裹的球体;也就是说,纤毛结构位于球体外部而非内部。几天之内,这种被研究人员称为"Anthrobots"的新型细胞在纤毛的驱动下开始移动。这些机器人完全长成后大小从30微米到500微米不等,有的呈球形并完全被纤毛覆盖,有的则呈不规则或足球状,纤毛覆盖不均匀。纤毛的分布决定了机器人的运动方式,它们或在直线或曲线路径上循环或摆动。Anthrobots通常在实验室条件下存活45至60天,然后自然降解。"Anthrobots可以在实验室培养皿中自我组装,"Gumuskaya说。"与Xenobots不同,它们不需要镊子或手术刀来塑造形状,我们可以使用成人细胞,甚至是老年患者的细胞,而不是胚胎细胞。它完全可以扩展--我们可以并行生产成群的这些机器人,这是开发治疗工具的良好开端。"不同大小和形状的Anthrobots群GizemGumuskaya/塔夫茨大学研究人员在实验室培养皿中培养了一层二维人类神经元,然后用一根细金属棒划伤细胞,制造出一个没有细胞的"伤口"。他们将一群Anthrobots机器人放入培养皿中,观察它们在神经元表面移动的情况。这些机器人促进了新细胞的生长,填补了伤口造成的空隙,并形成了与健康细胞一样粗的神经元桥。在没有Anthrobots的伤口处,神经元没有生长。另一位通讯作者迈克尔-莱文(MichaelLevin)说:"我们在实验室中构建的细胞组合体可以拥有超越它们在体内的功能。正常患者的气管细胞在不改变其DNA的情况下,可以自行移动并促进神经元在受损区域的生长,这令人着迷,也完全出乎意料。我们现在正在研究这种愈合机制是如何工作的,并探索这些构建体还能做些什么"。使用人体细胞的优势之一是能够利用患者自身的细胞构建机器人,在不引发免疫反应或不需要服用免疫抑制剂的情况下完成治疗工作。这种机器人的进一步发展可能会带来其他应用,比如清除动脉中的斑块积聚、修复受损的脊髓或视网膜神经、识别细菌或癌细胞,或向目标组织输送药物。从理论上讲,Anthrobots可以帮助愈合组织,同时输送促进再生的药物。这项研究发表在《先进科学》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1401209.htm手机版:https://m.cnbeta.com.tw/view/1401209.htm

封面图片

研究人员在感知气味的神经元内发现了一种以前未知的细胞成分

研究人员在感知气味的神经元内发现了一种以前未知的细胞成分在电子显微镜放大镜下,带有转导蛋白的囊泡的释放分子生物学系教授斯塔凡-博姆(StaffanBohm)说:"找到治疗嗅觉受损的方法的前提是首先了解嗅觉如何工作。"研究人员所发现的是神经细胞内的一个所谓的细胞器,这在以前是没有被观察到的。新发现的细胞器被研究人员命名为"多泡转导体",这一发现要归功于于默奥大学独特的显微镜基础设施。DevendraKumarMaurya研究人员DevendraKumarMaurya使用了一种被称为相关显微镜的新技术,该技术结合了电子显微镜和共焦显微镜,这样就可以对细胞的内部结构和不同蛋白质的位置进行成像。细胞器是细胞内独特的"工作站",可与人体的不同器官相比较,即不同的细胞器在细胞内有不同的功能。大多数细胞器在不同的细胞类型中是通用的,但也有一些细胞器具有特定的功能,只出现在某些细胞类型中。嗅觉神经细胞有长长的突起,即纤毛,突入鼻腔,含有结合气味物质的蛋白质,从而启动神经脉冲到大脑。将气味转化为神经脉冲的过程被称为转导,新发现的细胞器只包含转导蛋白。斯塔凡-博姆,于默奥大学分子生物学系教授转导体的作用是既储存又保持转导蛋白相互分离,直到它们被需要。当嗅觉受到刺激时,该细胞器的外膜破裂,释放出转导蛋白,以便它们能够到达神经元的纤毛,从而感知到气味。研究人员还发现,转导体携带一种叫做视网膜色素变性2号的蛋白质,即RP2,它在其他方面被称为调节眼睛感光细胞的转导。如果RP2基因发生突变,就会导致眼睛疾病视网膜色素变性的一个变种,损害眼睛的光敏细胞。"需要进一步研究的一个问题是,转导体是否在视觉中发挥作用,以及它是否存在于由神经递质而非光和气味激活的大脑神经元中。如果是这样,这一发现可能会被证明更加重要,"斯塔凡-博姆说。当研究人员DevendraKumarMaurya使用一种叫做相关显微镜的新技术时,发现了转导体。该技术结合了电子显微镜和共焦显微镜,因此可以同时对细胞的内部结构和不同蛋白质的位置进行成像。对这一发现至关重要的是Devendra的方法开发,它使该技术能够被用于分析组织切片中的完整神经元。...PC版:https://www.cnbeta.com.tw/articles/soft/1343173.htm手机版:https://m.cnbeta.com.tw/view/1343173.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人