中国科学家“看到”冰表面原子结构

中国科学家“看到”冰表面原子结构北京大学物理学院、北京怀柔综合性国家科学中心轻元素量子材料交叉平台(简称轻元素平台)组成的研究团队,利用自主研发的国产qPlus型扫描探针显微镜,在国际上首次“看到”冰表面的原子结构,并揭示其在零下153摄氏度即开始融化的奥秘。该成果22日晚发表于国际学术期刊《》上。冰表面的研究对探索生命起源和物质来源具有重要意义,但因缺乏原子尺度实验工具,科学界对冰表面结构的基本问题一直未有明确解答。据介绍,团队利用qPlus型扫描探针显微镜,开发出可分辨氢原子和化学键的成像技术,实现冰表面水分子氢键网络的精确识别和氢原子分布的精准定位。探测发现,冰表面结构同时存在六角密堆积和立方密堆积两种排列方式,且拼接堆砌形成稳定的网络结构。轻元素平台负责人江颖教授表示:“我们通过变温实验,首次在原子尺度上‘看到’冰表面预融化的过程,发现其在零下153摄氏度时就开始融化,这对理解冰面的润滑现象、云的形成及冰川的消融过程等至关重要”。来源,频道:@kejiqu群组:@kejiquchat

相关推荐

封面图片

科学家揭示了将振动转化为声音的内耳结构

科学家揭示了将振动转化为声音的内耳结构俄勒冈健康与科学大学(OHSU)的科学家们揭示了内耳的结构,该结构将振动转化为声音。这是几十年来的一项突破,其细节接近于原子结构。这一发现首次揭示了这一基本感官功能背后的分子机制,并为听力损失的研究开辟了令人兴奋的新途径。PC版:https://www.cnbeta.com/articles/soft/1327085.htm手机版:https://m.cnbeta.com/view/1327085.htm

封面图片

科学家将铟原子穿入纳米纤维束以创造灵活的纳米线

科学家将铟原子穿入纳米纤维束以创造灵活的纳米线图1.(a)三维TMC晶体结构,由TMC纳米纤维组成,周围是单原子行的插层元素。(b)单个TMC纳米纤维的端面和侧面图。氯化物为金色,过渡金属为绿色,插层元素为深紫色。资料来源:东京都立大学过渡金属卤化物(TMC)的原子线是由过渡金属和第16组元素如硫、硒和碲组成的纳米结构。它们能够自我组装成具有不同维度的广泛结构,使它们成为纳米材料革命的核心,是近年来激烈研究的焦点。特别是,一类三维TMC结构引起了人们的特别兴趣,它由一束束TMC纳米纤维组成,这些纤维之间由金属原子固定在一起,在其横截面上形成一个有序的晶格(见图1)。根据对金属的选择,该结构甚至可以成为一个超导体。此外,通过使纤维束变薄,它们可以被制成可导电的柔性结构:这使得TMC纳米结构成为纳米电路中用作布线的主要候选者。然而,要把这些结构做成深入研究它们所需的长而薄的纤维,以及用于纳米技术的应用,一直都很困难。图2:(a)碲化钨纳米纤维束和最终插层结构的原子结构示意图,以及扫描透射电子显微镜图像。(b)在硅衬底上合成的三维TMC纳米纤维。资料来源:东京都立大学由助理教授YusukeNakanishi和副教授YasumitsuMiyata领导的一个团队一直在研究TMC纳米结构的合成技术。在最近的工作中,他们表明,他们可以在前所未有的大长度尺度上生产长而薄的TMC束(不含金属)。现在,他们已经使用气相反应将原子级的薄排铟穿入薄的碲化钨束。通过在500摄氏度的真空条件下将他们的长纳米纤维束暴露在铟蒸气中,金属铟原子进入构成纤维束的各个纳米纤维之间的空间,形成一个夹层(或桥接)的铟行,将纤维结合在一起。在成功地生产出大量的这些线状TMC束后,他们开始研究他们的新纳米线的特性。通过观察电阻率与温度的关系,测量数据确凿地表明,单个线束的行为像金属一样,因此能导电。这与计算机模拟结果一致,同时也证明了这些结构的有序性。有趣的是,他们发现这种结构与成批捆绑的纳米纤维略有不同,因为夹层行导致每个纳米纤维围绕其轴线轻微旋转。该团队的技术不仅限于铟和碲化钨,也不仅限于这种特定的结构。他们希望他们的工作可能会给纳米材料的开发和对其独特性能的研究带来新的篇章。...PC版:https://www.cnbeta.com.tw/articles/soft/1347753.htm手机版:https://m.cnbeta.com.tw/view/1347753.htm

封面图片

科学家揭开硅上激光诱导的周期性表面结构的秘密

科学家揭开硅上激光诱导的周期性表面结构的秘密为电子设备生产如此小的部件需要加工和制备亚微米尺度的结构,最多可以比人类头发的宽度小数百倍。但目前的纳米表面加工方法使用的是光刻和电子束光刻--这些方法复杂、极其昂贵,通常无法进入,而且需要高水平的专业知识。激光诱导的周期性表面结构(LIPSS)已被指定为这些方法的一个新的和有前景的替代方法。在LIPSS中,飞秒激光器被用来提供超短的激光脉冲,从而在表面上自发地形成比激光波长小得多的周期性图案。LIPSS中一个众所周知的参数是激光波长的选择,它直接影响到所形成结构的周期性。然而,其他参数仍然是未知的。关于LIPSS的标准化使用的主要关注点包括形成的表面结构的质量,即基材的结晶度、潜在的缺陷和应变。为了始终如一地生产出具有可控性能和特点的LIPSS,以满足特定的应用,关键是要了解哪种激光源应该用于哪种特定的需求。通过对激光特性的适当选择,激光诱导的周期性表面结构(LIPSS)可以通过操纵其缺陷、应变和周期性,为特定的应用进行调整和定制。资料来源:名古屋工业大学的ReinaMiyagawa为了更深入地回答这些问题,一个由名古屋工业大学的科学家领导的日本研究合作,现在已经直接调查了受激光选择影响的各种参数。这项工作与大阪大学、东海大学、京都大学和日本原子能机构(JAEA)合作,由名古屋工业大学的ReinaMiyagawa助理教授领导,同时还有大阪大学的NorimasaOzaki副教授和东海大学的MasakiHashida教授,后者也是京都大学的一名研究员。他们的研究结果已经发表在《科学报告》杂志上。研究人员们解释说:"在我们的研究中,我们选择了硅作为基底,因为它是世界上许多光电设备中使用的一种材料,如晶体管、移动电话和太阳能电池。"研究人员在衬底上使用了两种不同的飞秒激光器。在一个实验中,一个脉冲为0.8微米的钛和蓝宝石(Ti:Sapphire)激光系统被用来在高于带隙能量的能量下构造硅。在另一个实验中,研究人员使用了一个中红外脉冲为11.4微米的自由电子激光器,这可以在低于样品带隙能量的能量下探测效果。对LIPSS样品的分析是在显微镜和宏观上进行的。使用透射电子显微镜(TEM)研究了微观的结晶度和纯度,而使用同步辐射高能X射线衍射(XRD)研究了更宏观的应变和广义结构的稳定性分析。"当使用Ti:Sapphire激光时,观察到的LIPSS保留了硅的高度结晶性,但似乎承担了一些残余的应变。相反,由中红外自由电子激光器形成的LIPSS导致了一些明显可见的缺陷。然而,该系统没有任何可观察到的应变,"宫川博士补充说。这项研究构成了第一份关于使用同步辐射高能X射线衍射技术对LIPSS的结晶性进行高分辨率、微观和宏观观察的报告。研究结果表明,LIPSS如何通过选择适当的激光器来操纵其缺陷、应变和周期性,从而为特定的应用进行调整和定制。沿着这些思路继续研究,可以进一步打开LIPSS广泛应用的途径,以实现低成本、简单、易得的纳米结构表面的制造,应用于广泛的光电设备。...PC版:https://www.cnbeta.com.tw/articles/soft/1339227.htm手机版:https://m.cnbeta.com.tw/view/1339227.htm

封面图片

[ 西藏冰崩事故令科学家困惑]

[西藏冰崩事故令科学家困惑]7月17日上午11时左右,西藏阿里地区日土县东汝乡发生冰崩事故,多达1亿立方米的冰川和石头涌下狭窄的山谷,杀死了9位牧民,以及数百只绵羊和牦牛。冰川碎片覆盖了约10平方公里的地面,堆积的厚度最高达到了30米。初步分析显示日土冰崩不同寻常,因为它的起始处是海拔5200–6200米的一个平坦点而不是陡峭的地形。冰川学家为此大惑不解,认为这讲不通。一种可能的解释是冰川融化或全球变暖导致使得冰川容易塌陷,西藏的温度自1960年代以来每10年上升了0.4°C,2倍于全球变暖速度。另一种解释是罕见的冰川涌浪现象,冰川以正常速度的10到100倍快速向前移动。西藏有很多涌浪型的冰川,研究人员怀疑高海拔地区的气候变化影响了涌浪的频率。http://www.nature.com/news/giant-deadly-ice-slide-baffles-researchers-1.20471

封面图片

科学家通过介电元原子排列液晶 制作出新型电控元表面

科学家通过介电元原子排列液晶制作出新型电控元表面介电元表面是当前光学领域最前沿的研究和应用方向之一。它们不仅具有低损耗的优势,还能实现亚波长尺度的器件厚度。此外,它们还能在振幅、相位和偏振等多个维度上自由调制光。这种能力是传统光学所缺乏的,对未来光学系统的集成、微型化和扩展具有重要意义。因此,介电元表面吸引了越来越多的工业关注。在这项研究中,剑桥大学的朱大平教授团队开发出了一种基于液晶的新型可调介电元表面。通过利用介电元表面对液晶的固有配向效应和电可控特性,无需使用液晶配向层材料和相关工艺,从而节省了设备制造时间和成本。这对硅基液晶(LCoS)等设备具有实际意义。介电元表面是当前光学领域最前沿的研究和应用方向之一。它们不仅具有低损耗的优势,还能实现亚波长尺度的器件厚度。资料来源:AdvancedDevices&Instrumentation研究小组通过测量器件在不同角度的透射率,定量研究了元表面本身对液晶的配准效应的强度。他们得到的明暗对比度为25.6。与此同时,研究团队还在实验中实现了近红外通信波段94%的调制深度。本研究提出了一种基于液晶的新型电控元表面。通过利用元表面对液晶的固有对准效应,省去了传统液晶器件中的对准过程,从而为传统液晶器件带来了巨大的经济价值。此外,由于元表面具有亚波长特性,理论上可以将器件做得非常薄,从而有效提高液晶器件的响应速度和分辨率。对于传统液晶器件(如LCoS)而言,集成了元表面的液晶器件具有重要的研究价值。编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1426160.htm手机版:https://m.cnbeta.com.tw/view/1426160.htm

封面图片

科学家首次以近乎原子的细节揭示了负责听力的内耳关键部分的结构

科学家首次以近乎原子的细节揭示了负责听力的内耳关键部分的结构俄勒冈健康与科学大学(OHSU)的科学家们首次以近乎解剖学的细节揭示了内耳中负责听力的关键部分的结构。高级作者EricGouaux博士说:“这是最后一个基本分子机制仍然未知的感官系统。执行这一绝对惊人的过程的分子机制几十年来一直没有得到解决。”...PC版:https://www.cnbeta.com/articles/soft/1329835.htm手机版:https://m.cnbeta.com/view/1329835.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人