【天文新鲜事】突然暴躁的黑洞为何忽亮忽暗?银河系中发现远古星系合并遗物Linvo说宇宙

None

相关推荐

封面图片

NASA韦伯望远镜揭示了“怪物”黑洞周围的银河系合并现象

NASA韦伯望远镜揭示了“怪物”黑洞周围的银河系合并现象现在,人们有一个强大的镜头总是指向宇宙的最深处,当涉及到天文学图片时,人们对“惊喜”的定义已经略有改变。当NASA的詹姆斯-韦伯太空望远镜(JWST)揭示了宇宙中辉煌而古老的部分时,它不再是令人惊讶。在这一点上,人们知道对这台开拓性机器的期望是不低的。PC版:https://www.cnbeta.com/articles/soft/1329399.htm手机版:https://m.cnbeta.com/view/1329399.htm

封面图片

两个星系激烈合并的新图像预示了银河系的命运

两个星系激烈合并的新图像预示了银河系的命运据BGR报道,美国宇航局的詹姆斯-韦伯太空望远镜可能会成为头条新闻的主角,但是其他的观察仍然在没有这个新航天器的帮助下发生。美国国家科学基金会的NOIRLabs在一张图片中捕捉到了这样一个非同寻常的观察。该实验室发布了一张两个星系合并的新图像,其中预示了银河系的命运。这两个星系的合并位于离地球约6000万光年的地方。在图片中,我们看到螺旋星系NGC4568和NGC4567被锁定在一个至少还需要几百万年才能完成的合并。这两个星系的一张新图片显示了它们在碰撞时,仍然相距约2万光年。这很美,但也提醒人们等待我们自己的银河系的最终命运。这张图片是用NOIRLabs的国际双子座天文台拍摄的。NOIRLabs表示,这两个星系将继续相互“吸引”。当它们这样做时,它们将引发强烈的恒星形成。此外,星系的外观将开始扭曲。这是因为重力将拉动每个星系中的物质。NOIRLabs表示,这些星系将继续相互环绕,慢慢拉近,直到它们完全碰撞。当这种情况发生时,长长的恒星和气体流将会混合,直到两个星系完全合并。除了令人惊叹之外,NOIRLabs说这张照片还预示了银河系的最终命运。科学家们已经预测了一段时间,银河系的命运将导致与我们邻近的仙女座星系发生碰撞。当然,科学家们预计这种碰撞至少在500万年内不会发生。但是,当它发生时,其结果可能会与这张最新的图片中看到的非常相似。看到我们自己的星系将如何可能与另一个星系相撞,是研究未来可能性的一个很好的机会。而随着我们对星系合并的研究增多,我们将更好地了解我们自己的银河系的命运。PC版:https://www.cnbeta.com/articles/soft/1303955.htm手机版:https://m.cnbeta.com/view/1303955.htm

封面图片

银河系中心黑洞具有强烈的螺旋磁场

银河系中心黑洞具有强烈的螺旋磁场事件视界望远镜(EHT)团队刚刚发布新图像,揭示了银河中心超大质量黑洞人马座A*(SgrA*)边缘的螺旋状强磁场,其磁场结构与M87星系中心黑洞惊人地相似,这表明控制黑洞供给和发射喷流的过程可能是普遍特征,而人马座A*应该有着隐藏喷流。研究结果今天发表在《天体物理学杂志快报》,上线索:@ZaiHuabot投稿:@TNSubmbot频道:@TestFlightCN

封面图片

韦伯望远镜揭示远古星系具有类似银河系的复杂结构https://www.bannedbook.org/bnews/aomi/ear

封面图片

打破银河系的信仰:天文学家在银河系中发现令人惊讶的磁场结构

打破银河系的信仰:天文学家在银河系中发现令人惊讶的磁场结构有些人可能会对磁场的存在感到惊讶,因为磁场的规模比地球还大。我们日常接触到的磁场大多是把东西粘在冰箱上,或者用指南针指北。后者显示了我们的星球所产生的磁场的存在。我们的太阳也会产生巨大的磁场,这会影响到太阳耀斑等现象。但是,横跨整个银河系的磁场几乎大得难以理解,但它们很可能在恒星和行星的形成过程中发挥了作用。地球科学与天文学系助理教授土井康夫(YasuoDoi)说:"到目前为止,对银河系内部磁场的所有观测都是在一个非常有限的模型内进行的,这个模型是均匀一致的,并且在很大程度上与银河系本身的圆盘形状相匹配。广岛大学的望远镜设备能够测量偏振光,帮助我们确定磁场特征,而欧洲航天局于2013年发射的盖亚卫星专门测量恒星的距离,这在一定程度上帮助我们建立了一个具有更精细三维细节的更好的模型。聚焦于一个特定区域,即我们螺旋星系的人马座臂(我们位于邻近的猎户座臂),发现那里的主导磁场明显偏离星系平面。"叠加在这张银河系人马座臂图像上的白线显示了光的偏振或方向。这与当地磁场线的方向相关。结合这些信息,就能绘制出银河系该臂的详细磁场图。资料来源:2023Doietal.以前的模型和观测只能想象银河系中存在一个平滑且基本均匀的磁场;而新的数据显示,虽然旋臂中的磁场线在大尺度上与银河系大致对齐,但在小尺度上,由于超新星和恒星风等各种天体物理现象的影响,这些磁场线实际上分散在不同的距离上。银河系的磁场也非常弱,比地球自身的磁场弱约10万倍。尽管如此,在很长一段时间内,星际空间中的气体和尘埃都会被这些磁场加速,这就解释了为什么会出现一些单靠引力无法解释的恒星苗圃--恒星形成区。这一发现意味着进一步绘制银河系内的磁场图有助于更好地解释银河系和其他星系的性质和演变。Doi说:"我个人对恒星形成的基础过程非常感兴趣,这一过程对于创造生命(包括我们自己)至关重要。目标是进一步观测并建立更好的银河磁场结构模型。这项工作旨在通过观测深入了解银河系内助长活跃恒星形成的气体积累及其历史发展"。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1415855.htm手机版:https://m.cnbeta.com.tw/view/1415855.htm

封面图片

"耀斑"与"回声":揭开银河系核心怪兽黑洞的神秘面纱

"耀斑"与"回声":揭开银河系核心怪兽黑洞的神秘面纱密歇根州立大学研究员格蕾丝-桑格-约翰逊(GraceSanger-Johnson)通过筛选十年来的X射线数据,从银河系中央超大质量黑洞人马座A*发现了九个以前未被发现的X射线耀斑。这张十多年前公布的NASA图像显示了一个X射线耀斑的例子。图片来源:NASA/JPL-CaltechMSU荣誉学院的本科生研究员杰克-尤特格(JackUteg)分析了来自黑洞附近分子云的X射线回波,从而窥探到人马座A*过去200多年的历史。密歇根州立大学的研究人员对银河系中心的超大质量黑洞有了突破性发现。他们的发现基于美国国家航空航天局(NASA)NuSTARX射线望远镜的数据,于6月11日在美国天文学会(AAS)第244次会议上公布。由于黑洞具有强大的引力场,连光都无法逃脱,因此研究黑洞面临着独特的挑战。为了了解这些神秘的天体,科学家们通常会研究它们的引力对附近恒星的影响以及邻近气体云的辐射等指标。NASANuSTAR天体学家的概念图NuSTAR轨道上的艺术家概念图。资料来源:NASA/JPL-加州理工学院黑洞研究创新项目格蕾丝-桑格-约翰逊(GraceSanger-Johnson)和杰克-尤特格(JackUteg)在物理与天文系助理教授张硕(ShuoZhang)的领导下,利用天基望远镜数十年的X射线数据,找到了更多揭示这些宇宙谜团的创新方法。格蕾丝和杰克的贡献令人无比自豪,"张说。"他们的工作充分体现了密苏里大学对开拓性研究和培养下一代天文学家的承诺。这项研究是MSU科学家如何揭开宇宙秘密的最好例证,使我们更接近于理解黑洞的本质和银河系中心的动态环境。"约翰逊分析了10年来的数据,寻找银河系中心黑洞人马座A*(SgrA*)的X射线耀斑,在此过程中,她发现了九个未被注意到的耀斑。这些耀斑是高能量光的剧烈爆发,为研究黑洞周围的环境提供了一个独特的机会,由于黑洞的引力惊人,人们通常看不到黑洞周围的环境。SgrA*是距离地球最近、活动最少的超大质量黑洞,因此,来自SgrA*及其耀斑的数据是目前已知的研究黑洞物理环境的方法之一。张说:"我们正坐在前排观察银河系中心这些独特的宇宙焰火。耀斑和焰火都能照亮黑暗,帮助我们观测到平时无法观测到的东西。这就是为什么天文学家需要知道这些耀斑发生的时间和地点,这样他们就可以利用这些光来研究黑洞的环境。"桑格-约翰逊精心筛选了NuSTAR(核光谱望远镜阵列)从2015年到2024年收集的十年X射线数据,NuSTAR是NASA的天基X射线望远镜之一。研究小组说,新发现的九个耀斑都为了解黑洞的环境和活动提供了宝贵的数据:"我们希望通过建立这个有关SgrA*耀斑的数据银行,我们和其他天文学家能够分析这些X射线耀斑的特性,并推断出超大质量黑洞极端环境内部的物理条件。"而MSU荣誉学院的本科生研究员Uteg则用一种类似于聆听回声的技术研究了黑洞的活动。Uteg分析了近20年的数据,目标是SgrA*附近被称为"桥"的巨型分子云。Uteg说:"与恒星不同,星际空间中的这些气体和尘埃云不会产生自己的X射线。因此,当X射线望远镜开始捕捉到来自"桥"的光子时,天文学家开始假设其来源。我们看到的亮度很可能是SgrA*过去X射线爆发的延迟反射。我们在2008年左右首次观测到亮度的增加。然后,在接下来的12年里,"桥"发出的X射线信号持续增加,直到2020年达到峰值亮度。"这种来自黑洞的"回波"光从SgrA*到分子云经过了数百年的时间,然后又经过了大约2.6万年的时间才到达地球。通过分析这种X射线回波,Uteg开始重建黑洞过去活动的时间轴,提供了仅靠直接观测无法获得的洞察力,分析过程使用了来自NuSTAR以及欧洲航天局X射线多镜(XMM)牛顿空间观测站的数据。Uteg说:"我们关注这个云团变亮的一个主要原因是,它能让我们确定过去SgrA*爆发的亮度。"在这些计算中,Uteg和MSU的团队确定,大约200年前,SgrA*在X射线中的亮度大约是我们今天看到的它的5个数量级。张说:"这是我们第一次为我们的超大质量黑洞周围的分子云构建了一个长达24年的可变性,这个分子云已经达到了它的X射线光度峰值。它使我们能够了解到SgrA*在大约200年前的活动情况。我们在MSU的研究团队将继续这种'天体考古游戏',进一步揭开银河系中心的神秘面纱。"虽然引发X射线耀斑的确切机制和黑洞的精确生命周期仍然是个谜,但MSU的研究人员相信,他们的发现将引发进一步的研究,并有可能彻底改变我们对这些神秘天体的认识。Uteg和Sanger-Johnson得到了NASANuSTAR客座观测计划的支持。编译自/scitechdaily...PC版:https://www.cnbeta.com.tw/articles/soft/1434874.htm手机版:https://m.cnbeta.com.tw/view/1434874.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人