自2013年以来,疫苗产商就知道 mRNA 疫苗中的脂质纳米粒子会在“所有测试物种”的卵巢中积聚。

自2013年以来,疫苗产商就知道mRNA疫苗中的脂质纳米粒子会在“所有测试物种”的卵巢中积聚。LipidnanoparticlesfrommRNAvaccineshavebeenknownsince2013toaccumulateintheovaries"ofeveryspeciestested."#FreeMilesGuo#FreeYvetteWang#MilesGuohastheGoods@NFSCHimalayaNews

相关推荐

封面图片

疫苗中的脂质纳米粒子可以「入脑」

疫苗中的脂质纳米粒子可以「入脑」理查德.弗莱明博士(RichardM.Fleming,物理学博士,医生,核子心脏病学家,律师)谈到疫苗中的脂质纳米粒子,大意是:早在2017年,莫得纳发表了一篇关于使用「脂质纳米粒子」于流感疫苗中的论文,论文说脂质纳米粒子扩散到了被实验动物的大脑、骨髓、肝脏、脾脏和肌肉注射部位。#脂质纳米#疫苗灾难#FreeMilesGuo#FreeYvetteWang#MilesGuoHasTheGoods

封面图片

新冠是一种呼吸道感染,但不是全部,新冠疫苗核心是性和生殖,你得到的是脂质纳米粒子在卵巢中积聚并阻塞卵巢。

新冠是一种呼吸道感染,但不是全部,新冠疫苗核心是性和生殖,你得到的是脂质纳米粒子在卵巢中积聚并阻塞卵巢。 随著女性月经失调、荷尔蒙失调的情况越来越严重,还有卵巢阻塞这是护士在女性腹部手术中看到的。脂质纳米颗粒穿过胎盘,脂质纳米颗粒抑制精液。 事实上在辉瑞公司的文件,他们告诉接种疫苗的男性不要与未接种疫苗的女性发生性关系,除非采取非常可靠的避孕措施,所以这简直就是一枚瞄准女神的鱼雷。 毫无疑问,这是要摧毁女人和婴儿,但也意味著阉割男人,因为脂质纳米颗粒会降解子宫内男婴的睾丸,包括在青春期产生男性荷尔蒙的间质细胞和支持细胞,使男孩变成男人。 这就像一个消灭火蚁的计划,他们给蚂蚁注射荷尔蒙让它们生出变异的后代,或者杀死他们,这肯定是一次人口灭绝行动。 辉瑞公司有婴儿因哺乳接种疫苗的妈妈而生病、呕吐的图表,他们有数万名女性月经中断的图表。 比如每天出血、一个月会出血两次,一个月没有月经,就意味著生不出孩子。他们还乐此不疲地记录著。 有一份长达8页的关于妊娠和哺乳的报告显示,这种注射会杀死子宫内的婴儿。辉瑞公司得出结论死亡是由于母亲接触疫苗造成的。 这份报告于2021年4月21日送交白宫,2021年4月23日沃林斯基医生拿到了这份报告,她知道这种注射会杀死婴儿,她告诉美国孕妇这种注射是安全有效的,在怀孕前、怀孕中或怀孕后都可以注射。

封面图片

新研发的纳米粒子可作用于细胞核心 用于针对性的抗炎症治疗

新研发的纳米粒子可作用于细胞核心用于针对性的抗炎症治疗这张电子显微照片记录了二氧化硅纳米颗粒的多孔性质。这些孔洞足够大,允许大量的NSA分子进入。在这里,它们被保护起来,直到被免疫细胞所吸收。在这一点上,NSA被释放出来,可以阻止炎症过程。巨噬细胞是大型免疫细胞,其自然功能是吸收病原体并引发炎症以消灭它们,经常参与炎症性疾病。当被过度激活时,它们会引发过度的炎症反应,反过来影响身体,而不是保护它。Necrosulfonamide(NSA)是一种新的分子,可以抑制几种重要的促炎症介质的释放,因此构成了减少某些类型炎症的一个有希望的进展。然而,由于它具有极强的疏水性,它在血液中的传播能力很差,可能针对许多细胞类型,引发潜在的毒性效应。共同指导这项研究的UNIGE医学院医学系和日内瓦炎症研究中心的教授GabyPalmer说:"这就是为什么这种分子还不能作为一种药物使用。使用纳米粒子作为运输容器将规避这些缺点,将药物直接送入巨噬细胞,在炎症开始的地方对抗炎症的过度激活。"科学家们测试了不同的多孔纳米粒子,主要标准是减少毒性和所需剂量,以及只有在纳米粒子到达巨噬细胞内部后才能够释放药物。''我们使用了几年前在人类和小鼠细胞上开发的体外筛选技术。这节省了时间,并大大减少了使用动物模型的需要。只有最有希望的颗粒才会在小鼠身上进行测试,这是在人类身上进行临床试验的先决条件。"CaroleBourquin解释说,他是UNIGE理学院(瑞士西部制药科学研究所)和医学院(麻醉学、药理学、重症监护和急诊系、肿瘤血液学转化研究中心、日内瓦炎症研究中心)的教授,他在UNIGE共同指导了这项工作。研究人员观察了三种非常不同的具有高孔隙率的纳米粒子:一种以环糊精为基础的纳米粒子,一种常用于化妆品或工业食品的物质,一种多孔的磷酸镁纳米粒子,以及最后一种多孔的二氧化硅纳米粒子。CaroleBourquin实验室的博士生、本研究的第一作者BartBoersma说:"第一种在细胞吸收行为上不太令人满意,而第二种被证明具有反作用:它触发了促炎症介质的释放,刺激了炎症反应而不是对抗它。"而多孔二氧化硅纳米粒子符合所有的标准:它是完全可生物降解的,具有被巨噬细胞吞噬的适当大小,并且能够在其众多的孔隙中吸收药物而不会过早释放。抗炎效果非常显著。该团队随后通过在纳米颗粒上涂抹一层额外的脂质来复制他们的测试,但与单独的二氧化硅纳米颗粒相比没有更大的好处。由德国-瑞士团队开发的其他二氧化硅纳米海绵已经证明了它们在运输抗肿瘤药物方面的有效性。CaroleBourquin说:"在这里,它们携带一种非常不同的药物,可以抑制免疫系统。介孔二氧化硅正日益显示出它是制药领域的首选纳米粒子,因为它非常有效、稳定且无毒。然而,每种药物都需要一个量身定做的载体:每次都必须重新评估颗粒的形状、大小、组成和去向。"这种强效抗炎药和这些介孔二氧化硅纳米颗粒的结合显示出一种有希望的协同作用,有待该团队进一步研究。...PC版:https://www.cnbeta.com.tw/articles/soft/1340809.htm手机版:https://m.cnbeta.com.tw/view/1340809.htm

封面图片

MIT工程人员开发出基因编辑mRNA纳米颗粒以对抗肺部疾病

MIT工程人员开发出基因编辑mRNA纳米颗粒以对抗肺部疾病研究人员正在努力将纳米粒子气溶胶化以便吸入,并计划在囊性纤维化和其他肺部疾病的小鼠模型中测试这些粒子。麻省理工学院和马萨诸塞大学医学院的工程师们设计了一种新型的纳米粒子,它可以被注射到肺部,在那里它可以传递编码有用蛋白质的信使RNA。研究人员说,随着进一步的发展,这些颗粒可以为囊性纤维化和其他肺部疾病提供一种可吸入的治疗。"这是第一次在小鼠身上证明了RNA的高效输送到肺部。"麻省理工学院化学工程系教授、麻省理工学院科赫综合癌症研究所和医学工程与科学研究所(IMES)成员丹尼尔-安德森说:"我们希望它可以用来治疗或修复一系列遗传疾病,包括囊性纤维化。"在一项针对小鼠的研究中,安德森和他的同事使用颗粒来传递编码CRISPR/Cas9基因编辑所需机器的mRNA。这可能为设计能够剪除和替换致病基因的治疗性纳米粒子打开了大门。这项研究于2023年3月30日发表在《自然-生物技术》杂志上,其资深作者是安德森、麻省理工学院大卫-H-科赫研究所教授罗伯特-朗格和麻省理工学院RNA治疗研究所副教授薛文。前麻省理工学院博士后、现为多伦多大学助理教授的BowenLi;麻省理工学院博士后RajithSinghManan;以及UMass医学院的博士后Shun-QingLiang是论文的主要作者。瞄准肺部信使RNA在治疗由错误基因引起的各种疾病方面具有巨大潜力。迄今为止,其部署的一个障碍是难以将其输送到身体的正确部位,而没有脱靶效应。注射的纳米粒子经常在肝脏中积聚,因此评估潜在mRNA治疗肝脏疾病的几项临床试验目前正在进行中。基于RNA的COVID-19疫苗,直接注射到肌肉组织中也已被证明是有效的。在许多这样的情况下,mRNA被封装在脂质纳米粒子中--一种脂肪球,保护mRNA不被过早分解并帮助它进入目标细胞。几年前,安德森的实验室着手设计能够更好地转染构成肺部大部分内衬的上皮细胞的颗粒。2019年,他的实验室创造了能够将编码生物发光蛋白的mRNA传递给肺部细胞的纳米粒子。这些颗粒是由聚合物而不是脂质制成的,这使得它们更容易气溶胶化,以便吸入肺部。然而,在这些颗粒上还需要做更多的工作,以增加它们的效力并最大限度地发挥其作用。在他们的新研究中,研究人员着手开发可以针对肺部的脂质纳米颗粒。这些颗粒由包含两部分的分子组成:一个带正电的头组和一个长的脂质尾巴。头组的正电荷有助于颗粒与带负电荷的mRNA相互作用,它也有助于mRNA在进入细胞后从吞噬颗粒的细胞结构中逃脱。同时,脂质尾部结构有助于颗粒通过细胞膜。研究人员为脂质尾巴提出了10种不同的化学结构,同时还有72种不同的头组。通过在小鼠身上筛选这些结构的不同组合,研究人员能够确定那些最有可能到达肺部的结构。高效传递在对小鼠的进一步测试中,研究人员表明,他们可以使用这些颗粒来传递编码CRISPR/Cas9组件的mRNA,这些组件旨在将基因编码的停止信号切断到动物的肺部细胞。当该停止信号被移除时,一种荧光蛋白的基因就会开启。测量这种荧光信号使研究人员能够确定成功表达mRNA的细胞的百分比。研究人员发现,在一剂mRNA之后,大约40%的肺上皮细胞被转染了。两次剂量使该水平达到50%以上,三次剂量则达到60%。治疗肺部疾病的最重要目标是两种类型的上皮细胞,称为俱乐部细胞和纤毛细胞,其中每一种的转染率约为15%。"这意味着我们能够编辑的细胞确实是对肺部疾病感兴趣的细胞,"BowenLi说。"这种脂质能够使我们将mRNA输送到肺部,比迄今为止报道的任何其他输送系统都要有效得多"。新颗粒还能快速分解,使它们在几天内从肺部清除,并减少炎症的风险。如果需要重复用药,这些颗粒还可以多次投递给同一病人。这使它们比另一种传递mRNA的方法更具优势,后者使用无害的腺病毒的改良版。这些病毒在传递RNA方面非常有效,但不能重复给药,因为它们会在宿主体内诱发免疫反应。特拉维夫大学精确纳米医学实验室主任丹-佩尔(DanPeer)说:"这项成就为各种肺部疾病的治疗性肺部基因传递应用铺平了道路,他没有参与这项研究。与传统的疫苗和疗法相比,这个平台拥有几个优势,包括它是无细胞的,能够快速制造,并且具有高度的通用性和良好的安全性。"为了在这项研究中提供颗粒,研究人员使用了一种叫做气管内灌注的方法,这种方法经常被用来作为向肺部提供药物的模型。他们现在正在努力使他们的纳米粒子更加稳定,因此它们可以被气溶胶化,并使用雾化器吸入。研究人员还计划测试这些颗粒,以便在该疾病的小鼠模型中传递mRNA,从而纠正在导致囊性纤维化的基因中发现的遗传变异。他们还希望开发其他肺部疾病的治疗方法,如特发性肺纤维化,以及可以直接传递到肺部的mRNA疫苗。...PC版:https://www.cnbeta.com.tw/articles/soft/1352441.htm手机版:https://m.cnbeta.com.tw/view/1352441.htm

封面图片

生产mRNA疫苗需要用到多种酶、脂质、核苷酸类似物,分别有专门的生物科技公司生产,没有哪家公司能全都自己做,辉瑞、莫德纳也要从多

生产mRNA疫苗需要用到多种酶、脂质、核苷酸类似物,分别有专门的生物科技公司生产,没有哪家公司能全都自己做,辉瑞、莫德纳也要从多家公司购买原料。石药集团却声称其生产mRNA疫苗的关键原料都是自己生产的,难道它是世界上最牛的生物技术公司?靠卖这些原料就能发财了,何必还想卖疫苗?mRNA很不稳定,长期储存需要冷冻,而石药集团声称其mRNA疫苗超级稳定,冷藏就可以了。里面真有mRNA?这么侮辱智商的骗人产品能够获批准上市,敢往人身上打,是不是某个大领导亲自指挥亲自部署的?

封面图片

新的纳米颗粒设计可能会改善mRNA疫苗对癌症的治疗效果

新的纳米颗粒设计可能会改善mRNA疫苗对癌症的治疗效果疫苗通过让身体做好对抗细菌或病毒等病原体的准备,帮助预防感染。大多数传统疫苗含有减弱或死亡的细菌或病毒,以触发免疫反应。然而,mRNA疫苗(例如COVID-19疫苗)的工作原理是引入一段与病毒外部的蛋白质相对应的mRNA,从而产生抗体并标记病毒以进行破坏。一旦产生,抗体就会保留在体内,因此如果免疫系统再次暴露于病原体,它可以快速做出反应。现在,约翰·霍普金斯大学医学院的研究人员进行的一项新研究可能找到了一种改善mRNA疫苗递送以治疗传染性和非传染性疾病的方法。当使用mRNA疫苗治疗癌症等非传染性疾病时,面临的挑战是将材料传递给大量树突状细胞,树突状细胞是一种特殊类型的免疫细胞,可教导免疫系统(特别是T细胞)寻找并摧毁癌细胞。该研究的通讯作者乔丹·格林(JordanGreen)表示:“免疫系统的设计目的是通过放大反应来发挥作用,树突状细胞会教导其他免疫细胞在体内寻找什么。”制造更强效的疫苗需要携带mRNA的纳米颗粒到达、进入树突状细胞并在其中表达。表达后,mRNA会降解,由此产生的免疫反应持续时间更长。COVID-19mRNA疫苗包含由脂质(一种脂肪酸)制成的纳米颗粒,注射到肌肉中。但是,肌肉中的树突状细胞相对较少。将mRNA疫苗注射到血液中也会导致输送问题,因为疫苗往往会直接进入肝脏,并在那里被分解。因此,研究人员将目光投向了一个树突状细胞数量远远多于的器官:脾脏。格林说:“我们的目标是开发一种不会直接发送到肝脏的纳米颗粒,它可以有效地教导免疫系统细胞寻找并摧毁适当的目标。”在测试了多种材料后,研究人员决定将其mRNA包裹在基于聚合物的纳米颗粒中,其中亲水分子和疏水分子的比例恰到好处,使其能够进入目标细胞。这些聚合物含有对特定组织类型具有亲和力的分子,这里是脾脏。此外,纳米颗粒中添加了辅助剂或佐剂以激活树突状细胞。他们在小鼠身上测试了他们的新型纳米颗粒结构,发现它避开了肝脏,并被脾细胞吸收,其水平比mRNA本身高出约50倍。纳米颗粒到达的脾细胞中近80%是目标树突状细胞。在经过基因工程改造的小鼠中,当纳米颗粒传递其mRNA内容物时,免疫细胞会发出红光,研究人员发现,脾脏中5%至6%的树突状细胞成功吸收、打开并处理了纳米颗粒。这种现象在树突状细胞中比在其他免疫细胞中更容易观察到。然后纳米粒子生物降解成安全的副产品。证明新的纳米颗粒能够成功地靶向脾脏的树突状细胞之后,研究人员为其配备了免疫治疗药物,并再次在小鼠身上进行了测试。他们发现,一半的结直肠癌小鼠模型在接受两次注射后长期存活,而接受其他含有免疫治疗药物的纳米颗粒制剂或单独免疫治疗药物治疗后,只有10%至30%的存活率。当幸存的小鼠被给予额外的结直肠癌细胞时,它们都无需额外治疗即可存活,这向研究人员表明,它们的纳米颗粒提供了长期免疫反应,可防止癌症复发。他们还发现,治疗21天后,60%的细胞杀伤T细胞识别并攻击结直肠癌细胞。研究人员在患有黑色素瘤的小鼠模型中发现了类似的反应,其中大约一半的同类型T细胞准备好攻击黑色素瘤细胞。Green说:“纳米颗粒输送系统能够创建一支能够识别癌症相关抗原的T细胞大军。这种新的纳米颗粒输送系统可能会改善传染病疫苗的接种方式,并且也可能为治疗癌症开辟一条新途径。”该研究发表在《PNAS》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1368037.htm手机版:https://m.cnbeta.com.tw/view/1368037.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人