耐药性细菌个案趋增专家指与初期新冠病人误服抗生素有关#港闻衞生防护中心指耐药性细菌引致死亡数字上升,相信与新冠疫情初期大部分确诊

None

相关推荐

封面图片

废水: 抗生素耐药性的隐藏热点

废水:抗生素耐药性的隐藏热点哥德堡大学Sahgrenska学院的FannyBerglund自从抗生素被引入诊所后,致病细菌也开始在其DNA中积累越来越多的抗性基因。这个仍在进行的过程要求以前很好地固定在某些细菌物种的染色体上的基因,首先获得移动的能力,并最终在物种之间跳跃。在《通信生物学》杂志上发表的一项研究中,瑞典哥德堡抗生素耐药性研究中心(CASE)的研究人员提出了基因可能获得其移动能力的证据。众所周知,废水中含有抗生素的残留物,可能有利于抗生素耐药菌的发展。新的证据显示,废水还具有允许抗性基因开始从无害细菌到致病细菌的旅程的特性。研究人员承认,有了抗生素来推动这个过程是不够的。染色体上携带抗性基因的物种也需要存在,以及可以提供移动抗性基因能力的DNA的特定序列。通过研究来自不同环境的数千个样本的DNA,研究人员可以确定所有的关键成分在哪里聚集。令作者惊讶的是,它不在人类或动物的肠道中,而是在世界各地取样的废水中。哥德堡大学Sahlgrenska学院的研究员、该研究的主要作者FannyBerglund说:"为了对抗抗生素耐药性,我们不能只专注于防止那些已经在流通的耐药细菌类型的传播,我们还需要防止或推迟新细菌的出现。"同一研究小组还发表了其他几项研究结论,表明环境中藏有大量不同的抗性基因,比我们今天在致病细菌中看到的抗性基因多得多。这使得环境成为新的抗性基因的巨大来源,这些基因一个接一个地获得了在物种之间跳跃的能力,最终在病原体中出现。作者的结论是,通过用抗生素污染环境来促进这种发展并不是一个好主意。"现在有很多人都在关注减少人类和动物的抗生素使用。这当然很重要,但我们的研究表明,我们也需要关注我们的废物流,因为这似乎是一个可能出现抗生素耐药性新变种的地方,"FannyBerglund总结道。...PC版:https://www.cnbeta.com.tw/articles/soft/1359543.htm手机版:https://m.cnbeta.com.tw/view/1359543.htm

封面图片

耐药性细菌感染上升 衞生防护中心吁勿服用剩余抗生素

耐药性细菌感染上升衞生防护中心吁勿服用剩余抗生素衞生防护中心感染控制处顾问医生马绍强指出,耐药性细菌感染个案近年有上升趋势,亦可引致较严重感染包括肺炎、心内膜炎、脑膜炎等,相关死亡率高达5成以上。马绍强说,耐药性细菌可人传人,并透过食物、动物及环境传播,过去数年监测发现,刺身、寿司、卤味、烧味及沙律菜等的耐药性肠道杆菌阳性比例增加。他又说,不少资料显示,新冠疫情期间,耐药性情况加剧,参考美国疾病控制和预防中心,疫情初期各界对新冠病毒了解不足,当时约8成病人获处方抗生素,但新冠病毒并非细菌,不需服用抗生素,导致错误服用抗生素情况。再加上当时医院曾经出现病人多、环境挤逼等情况,感染控制面对一定困难,增加耐药性细菌感染机会。马绍强提醒,市民不应自行到药房买抗生素或服用剩余抗生素。如有不适应尽快求医,不要向医生要求处方抗生素。他又说,接种流感及新冠疫苗能预防继发性细菌感染,从而减少出现耐药性的机会。2023-11-1717:23:18(2)

封面图片

研究人员揭示如何利用细菌的自毁能力来对抗抗生素耐药性

研究人员揭示如何利用细菌的自毁能力来对抗抗生素耐药性研究小组找到了一种开启重要细菌防御机制的方法,以对抗和控制细菌感染。这种防御系统被称为基于环状寡核苷酸的抗噬菌体信号系统(CBASS),是某些细菌用来保护自己免受病毒攻击的一种天然机制。细菌通过自毁来防止病毒扩散到种群中的其他细菌细胞。共同第一作者、伊坎山西奈医院药理学教授AneelAggarwal博士说:"我们想观察细菌自毁系统CBASS是如何被激活的,以及是否可以利用它来限制细菌感染。这是解决细菌感染问题的一种新方法,细菌感染是医院和其他环境中的一个重大问题。找到对抗抗生素耐药性的新工具至关重要。在抗击超级细菌的战争中,我们需要不断创新,扩大我们的工具包,以应对不断发展的耐药性。"根据美国疾病控制和预防中心2019年的一份报告,美国每年发生超过280万例抗菌药物耐药性感染,超过3.5万人因此死亡。伊坎西奈山医院的研究人员揭示了如何利用细菌的自我杀伤活性来对抗抗生素耐药性。上图:CBASSCap5蛋白四聚体(青色所示)与环状二核苷酸(橙色所示)结合后形成的三维结构,用于破坏细菌自身的DNA(模型,红色所示)。DNA分裂所需的镁离子显示为绿色。图片来源:Rechkoblit等人,《自然-结构与分子生物学作为实验的一部分,研究人员通过结构分析以及各种生物物理、生物化学和细胞测定,研究了"Cap5"(即CBASS-associatedprotein5)如何被激活以降解DNA,以及如何利用它来控制细菌感染。Cap5是一种关键蛋白质,它被环状核苷酸(小信号分子)激活,从而破坏细菌细胞自身的DNA。"在我们的研究中,我们首先确定了许多环状核苷酸中哪些能激活CBASS系统的效应器Cap5,"共同第一作者、伊坎西奈山大学药理学助理教授OlgaRechkoblit博士说。"弄清这一点后,我们仔细研究了Cap5与这些小信号分子结合时的结构。然后,在伊坎西奈山医院研究员DanielaSciaky博士的专业帮助下,我们证明了通过将这些特殊分子添加到细菌的环境中,这些分子有可能被用来消灭细菌。"研究人员发现,用环状核苷酸确定Cap5的结构是一项技术挑战,需要布鲁克海文国家实验室AMX光束线科学家DaleF.Kreitler博士的专业帮助。通过在同一设施使用微聚焦同步加速器X射线辐射,研究人员完成了这项工作。微聚焦同步加速器X射线辐射是一种X射线辐射,它不仅是利用特定类型的粒子加速器(同步加速器)产生的,而且还被仔细地集中或聚焦在一个微小的区域,以便进行更详细的成像或分析。接下来,研究人员将探索他们的发现如何适用于其他类型的细菌,并评估他们的方法是否可用于控制由各种有害细菌引起的感染。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1416637.htm手机版:https://m.cnbeta.com.tw/view/1416637.htm

封面图片

研究认为细菌耐药性的激增并不完全归咎于抗生素的使用

研究认为细菌耐药性的激增并不完全归咎于抗生素的使用来自韦尔科姆-桑格研究所、奥斯陆大学、剑桥大学及其合作者的研究人员对细菌进行了一次高分辨率基因比较。他们将700多份新的血液样本与近5000份先前测序过的细菌样本进行了比较,以回答哪些因素会影响耐抗生素大肠杆菌(E.coli)的传播。最近发表在《柳叶刀微生物》(LancetMicrobe)杂志上的这项研究表明,在某些情况下,抗生素使用量的增加确实会导致耐药细菌的增加。不过,研究人员证实,这取决于所使用的广谱抗生素的类型。他们还发现,抗生素耐药基因的成功取决于携带这些基因的细菌的基因构成。认识抗生素耐药性背后的所有主要因素有助于更深入地了解这些细菌是如何传播的,以及是什么阻碍了它们的传播。这样就能更好地为公共卫生干预措施提供信息,利用完整的环境视角来帮助阻止耐药性感染的传播。大肠杆菌是全球血液感染的常见原因。造成这些感染的大肠杆菌通常存在于肠道中,不会造成危害。但是,如果由于免疫系统衰弱而进入血液,就会造成严重的感染,危及生命。对于医疗服务提供者来说,抗生素耐药性,尤其是多重耐药性(MDR),已成为此类感染的一个常见特征。在英国,超过40%的大肠杆菌血流感染对医院用于治疗严重感染的一种主要抗生素产生了耐药性。抗生素的使用和抗药性的变化全球大肠杆菌的抗生素耐药性比率各不相同。例如,对一种常用于治疗由大肠杆菌引起的尿路感染的抗生素的耐药率,因国家而异,从8.4%到92.9%不等。几十年来,抗生素耐药性一直是一个研究课题,以往研究的监测数据一直表明,抗生素的使用与包括英国在内的全球细菌耐药率增加之间存在关联。以往的研究表明,耐药和非耐药大肠杆菌菌株稳定共存,在某些情况下,非耐药细菌更容易成功。然而,由于缺乏无偏见的大规模纵向数据集,以前无法评估基因驱动因素在其中所起的作用。韦尔科姆-桑格研究所、奥斯陆大学及其合作者的这项新研究首次直接比较了挪威和英国两个国家不同大肠杆菌菌株的成功率,并根据全国范围内的抗生素使用水平解释了差异。特定国家的抗生素耐药性通过分析近20年的数据,他们发现抗生素的使用在某些情况下与抗药性的增加有关,这取决于抗生素的种类。其中一类抗生素,即非青霉素类β-内酰胺类抗生素,在英国的平均人均使用量是挪威的三到五倍。这导致了某种具有多重耐药性的大肠杆菌菌株的感染率升高。不过,英国使用抗生素三甲氧苄氨嘧啶的频率也更高,但在比较两国常见的大肠杆菌菌株时,分析并未发现英国的抗药性水平更高。研究发现,MDR细菌的存活取决于周围环境中存在哪些大肠杆菌菌株。由于这种情况以及一个地区的其他选择性压力,研究人员得出结论,不能认为广泛使用一种抗生素会对在不同国家传播的耐抗生素细菌产生同样的影响。持续研究的重要性科学家们强调,他们的研究结果需要持续的研究努力,以确定大肠杆菌和其他临床重要细菌在各种生态环境中传播的其他驱动因素。要想充分了解抗生素、旅行、食品生产系统和其他因素对一个国家耐药性水平的综合影响,还需要进一步的研究。了解更多能够战胜抗生素耐药性大肠杆菌的菌株,有助于找到阻止其传播的新方法。例如,尝试增加某一地区非抗药性、无害细菌的数量。第一作者之一、挪威奥斯陆大学安娜-波蒂宁(AnnaPöntinen)博士是威康-桑格研究所(WellcomeSangerInstitute)的访问科学家:"我们的大规模研究使我们能够开始回答一些长期存在的问题,即是什么原因导致人群中出现耐多药细菌。这项研究之所以能够完成,是因为英国和挪威对细菌病原体进行了全国性的系统监测。如果没有这样的系统,科学家们利用基因组学的力量所能了解到的东西就会受到很大的限制"。剑桥大学的合著者朱利安-帕克希尔(JulianParkhill)教授说:"我们的研究表明,抗生素是抗生素耐药大肠杆菌成功的调节因素,而不是唯一原因。我们的研究追踪了几种不同广谱抗生素的影响,结果表明这些抗生素的影响因国家和地区而异。总之,我们的综合基因分析表明,在不了解该环境中细菌菌株的基因构成的情况下,并不总是能够预测抗生素的使用会对一个地区产生怎样的影响。"该研究的资深作者、威康桑格研究所(WellcomeSangerInstitute)和挪威奥斯陆大学的尤卡-科兰德(JukkaCorander)教授说:"耐药性大肠杆菌是一个重大的全球公共卫生问题。长期以来,人们一直认为过度使用抗生素是导致超级细菌增多和传播的原因之一,而我们的研究则强调,广泛存在的大肠杆菌菌株的耐药性水平可能有很大差异。抗生素的使用将是一种选择性压力,而我们的研究表明,这并不是影响这些细菌成功的唯一因素。如果我们要控制超级细菌的传播,继续利用基因组学来详细了解细菌成功的内在驱动因素至关重要"。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1419423.htm手机版:https://m.cnbeta.com.tw/view/1419423.htm

封面图片

AI与超级细菌展开斗争 帮助寻找新的抗生素药物以对抗耐药性感染

AI与超级细菌展开斗争帮助寻找新的抗生素药物以对抗耐药性感染"鲍曼不动杆菌可以在医院的门把手和设备上生存很长时间,它可以从环境中吸收抗生素抗性基因。"前麻省理工学院博士后、现为麦克马斯特大学生物化学和生物医学科学助理教授乔纳森-斯托克斯说:"现在发现鲍曼不动杆菌分离物对几乎所有抗生素都有抗性,这真的很常见。"研究人员使用机器学习模型从近7000种潜在的药物化合物库中确定了这种新药,他们训练这种模型来评估一种化学化合物是否会抑制鲍曼纽氏菌的生长。麻省理工学院和麦克马斯特大学的研究人员利用一种人工智能算法,发现了一种新的抗生素,可以杀死一种细菌(鲍曼不动杆菌,粉红色),它是许多耐药性感染的罪魁祸首。资料来源:ChristineDaniloff/MIT;鲍曼不动杆菌图片由CDC提供麻省理工学院医学工程与科学研究所(IMES)和生物工程系的Termeer医学工程与科学教授JamesCollins说:"这一发现进一步支持了人工智能可以大大加快和扩大我们寻找新型抗生素的前提。我很兴奋,这项工作表明我们可以使用人工智能来帮助打击有问题的病原体,如鲍曼不动杆菌"。柯林斯和斯托克斯是这项新研究的资深作者,该研究于5月25日发表在《自然-化学生物学》杂志上。该论文的主要作者是麦克马斯特大学的研究生GaryLiu和DeniseCatacutan以及麦克马斯特大学的应届毕业生KhushiRathod。AI协助下的药物发现在过去的几十年里,许多致病细菌对现有抗生素的抗药性越来越强,而新的抗生素却很少被开发出来。几年前,柯林斯、斯托克斯和麻省理工学院教授ReginaBarzilay(他也是这项新研究的作者之一),开始利用机器学习来解决这个日益严重的问题,机器学习是一种人工智能,可以学习识别大量数据的模式。柯林斯和巴尔齐莱是麻省理工学院AbdulLatifJameel健康机器学习诊所的共同负责人,他们希望这种方法可以用来识别化学结构与任何现有药物不同的新抗生素。在他们最初的演示中,研究人员训练了一种机器学习算法,以识别能够抑制大肠杆菌生长的化学结构。在对1亿多个化合物的筛选中,该算法产生了一种分子,研究人员将其称为卤菌素,取自《2001年:太空漫游》中虚构的人工智能系统。他们表明,这种分子不仅可以杀死大肠杆菌,而且可以杀死其他几种对治疗有抵抗力的细菌。"在那篇论文之后,当我们表明这些机器学习方法可以很好地用于复杂的抗生素发现任务时,我们把注意力转向了我认为是多药耐药细菌感染的头号公敌,也就是鲍曼不动杆菌,"斯托克斯说。为了获得计算模型的训练数据,研究人员首先让生长在实验室盘子里的鲍曼不动杆菌接触大约7500种不同的化合物,观察哪些化合物能够抑制该微生物的生长。然后他们将每个分子的结构输入模型。他们还告诉该模型每个结构是否能抑制细菌生长。这使得该算法能够学习与生长抑制有关的化学特征。模型被训练出来后,研究人员用它来分析一套它以前没有见过的6680个化合物,这些化合物来自于布罗德研究所的药物再利用中心。这项分析花了不到两个小时,产生了几百个最热门的化合物。在这些化合物中,研究人员选择了240个在实验室里进行实验,重点是结构与现有抗生素或训练数据中的分子不同的化合物。这些测试产生了9种抗生素,包括一种非常有效的抗生素。这种化合物最初被探索为一种潜在的糖尿病药物,结果发现它在杀死鲍曼不动杆菌方面非常有效,但对其他种类的细菌,包括铜绿假单胞菌、金黄色葡萄球菌和耐碳青霉烯的肠杆菌科细菌没有作用。这种"窄谱"杀伤能力是抗生素的一个理想特征,因为它将细菌对药物的抗性迅速扩散的风险降至最低。另一个优点是,这种药物可能会放过生活在人类肠道中的有益细菌,并有助于抑制机会性感染,如艰难梭菌。斯托克斯说:"抗生素通常必须全身施用,而你最不想做的事情就是造成严重的菌群失调,使这些已经生病的病人受到二次感染。"一种新的机制在对小鼠的研究中,研究人员表明,他们命名为abaucin的药物可以治疗由鲍曼不动杆菌引起的伤口感染。他们还在实验室测试中表明,该药物对从人类患者身上分离出来的各种耐药性鲍曼氏菌菌株有效。进一步的实验显示,该药物通过干扰一个被称为脂蛋白运输的过程来杀死细胞,细胞利用该过程将蛋白质从细胞内部运输到细胞包膜。具体而言,该药物似乎抑制了LolE,一种参与这一过程的蛋白质。所有的革兰氏阴性细菌都表达这种酶,因此研究人员惊讶地发现,阿鲍辛在针对鲍曼尼氏菌方面具有如此高的选择性。他们假设,鲍曼纽氏菌如何执行这一任务的轻微差异可能是该药物的选择性的原因。"我们还没有最终确定实验数据的获取,但我们认为这是因为鲍曼纽斯菌进行脂蛋白贩运的方式与其他革兰氏阴性物种有一点不同。我们相信这就是我们得到这种窄谱活性的原因,"斯托克斯说。斯托克斯的实验室现在正与麦克马斯特的其他研究人员合作,优化该化合物的药用特性,希望能将其开发出来,最终用于病人身上。研究人员还计划使用他们的建模方法来确定其他类型的耐药性感染的潜在抗生素,包括那些由金黄色葡萄球菌和绿脓杆菌引起的感染。...PC版:https://www.cnbeta.com.tw/articles/soft/1362051.htm手机版:https://m.cnbeta.com.tw/view/1362051.htm

封面图片

衞生防护中心指烧味及刺身等食品耐药性细菌风险增吁市民正确服用抗生素#港闻衞生防护中心指,近年烧味、刺身等即食食品验出耐药性细菌比

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人