Test-Agent:蚂蚁集团开源的测试行业大模型工具。| #工具

:蚂蚁集团开源的测试行业大模型工具。#工具该项目主要包含测试领域模型TestGPT-7B模型何其配套工具。与当前已有开源模型相比,TestGPT-7B模型在用例执行通过率(pass1)、用例场景覆盖(平均测试场景数)上都处于业界领先水平。TestGPT-7B模型以CodeLlama-7B为基座,进行了相关下游任务的微调:多语言测试用例生成(Java/Python/Javascript)一直以来都是学术界和工业界非常关注的领域,近年来不断有新产品或工具孵化出来,如EvoSuite、Randoop、SmartUnit等。然而传统的用例生成存在其难以解决的痛点问题,基于大模型的测试用例生成在测试用例可读性、测试场景完整度、多语言支持方面都优于传统用例生成工具。本次重点支持了多语言测试用例生成,在我们本次开源的版本中首先包含了Java、Python、Javascript的测试用例生成能力,下一版本中逐步开放Go、C++等语言。测试用例Assert补全对当前测试用例现状的分析与探查时,我们发现代码仓库中存在一定比例的存量测试用例中未包含Assert。没有Assert的测试用例虽然能够在回归过程中执行通过,却无法发现问题。因此我们拓展了测试用例Assert自动补全这一场景。通过该模型能力,结合一定的工程化配套,可以实现对全库测试用例的批量自动补全,智能提升项目质量水位。

相关推荐

封面图片

Command-R:多语言、高性能、可定制:350亿参数的开源语言模型

:多语言、高性能、可定制:350亿参数的开源语言模型-C4AICommand-R是一个350亿参数的高性能生成式模型,由Cohere和CohereForAI联合开发。-Command-R是一个大型语言模型,其开放权重针对多种用例进行了优化,包括推理、摘要和问答。-Command-R具有多语言生成能力,在10种语言上进行了评估,并具有高性能的RAG(Retrieval-AugmentedGeneration)能力。-该模型的许可证为CC-BY-NC,使用时还需遵守C4AI的可接受使用政策。-Command-R的上下文长度为128K,可以使用HuggingFace的Transformers库进行调用和使用。-C4AICommand-R的发布展示了Cohere在开发大型语言模型方面的实力。350亿参数的模型规模处于业界领先水平,有望在多个应用领域取得突破。-Command-R的开放权重和对多种用例的优化,为开发者和研究者提供了灵活性和可定制性。这有助于促进模型的应用和创新。-多语言生成能力和高性能RAG能力的结合,使Command-R在跨语言任务和知识密集型任务上具有独特优势。这可能推动自然语言处理技术在全球范围内的普及和应用。-CC-BY-NC许可证和C4AI的可接受使用政策体现了Cohere对于负责任AI开发的重视。在开放模型的同时,设置合理的使用边界,有助于防范潜在的滥用风险。-基于HuggingFace生态系统发布模型,降低了用户的使用门槛。这种与主流开源社区的融合,有利于Command-R的推广和迭代。-尽管Command-R的开放权重提供了灵活性,但对于缺乏计算资源的中小型开发者而言,350亿参数的模型规模可能难以承受。这可能加剧AI开发的门槛和不平等。-Command-R在多语言任务上的出色表现,可能促使更多开发者将其应用于跨文化交流和全球化业务。但过度依赖单一模型,可能忽视了不同语言和文化的独特性。-开放模型虽然有利于创新,但也可能加剧恶意使用和滥用的风险。即使有使用政策的约束,在实践中难以对每一个应用进行有效监管。这需要技术和制度的双重发力。

封面图片

微软开源的一个文本编码器Glyph-ByT5-v2。

微软开源的一个文本编码器Glyph-ByT5-v2。支持使用十多种语言生成图片。还搭配了一个使用这个文本编码器的SDXL模型,可以直接生成中文海报和内容。从演示来看排版都挺好的。1)创建了一个高质量的多语言字形文本和图形设计数据集,包含超过100万个字形文本对和1000万个图形设计图像文本对,覆盖另外九种语言;2)构建了一个多语言视觉段落基准数据集,包括1000个提示,每种语言100个,用于评估多语言视觉拼写准确性;3)采用最新的步进感知偏好学习方法,提高了视觉美学质量。模型下载:https://huggingface.co/GlyphByT5/Glyph-SDXL-v2

封面图片

AI 根据声音内容帮照片“对口型”,蚂蚁集团开源 EchoMimic 项目

AI根据声音内容帮照片“对口型”,蚂蚁集团开源EchoMimic项目蚂蚁集团开源了名为的新项目,其能够通过人像面部特征和音频来帮人物“对口型”,结合面部标志点和音频内容生成较为稳定、自然的视频。该项目具备较高的稳定性和自然度,通过融合音频和面部标志点(面部关键特征和结构,通常位于眼、鼻、嘴等位置)的特征,可生成更符合真实面部运动和表情变化的视频。其支持单独使用音频或面部标志点生成肖像视频,也支持将音频和人像照片相结合做出“对口型”一般的效果。据悉,其支持多语言(包含中文普通话、英语)及多风格,也可应对唱歌等场景。来源,频道:@kejiqu群组:@kejiquchat

封面图片

ModelScope-Agent: 用开源大型语言模型构建可定制的Agent系统,一个适用于实际应用的通用且可定制的Agent框

:用开源大型语言模型构建可定制的Agent系统,一个适用于实际应用的通用且可定制的Agent框架,基于开源LLM作为控制器具有以下特点:可定制且功能全面的框架:提供可定制的引擎设计,涵盖了数据收集、工具检索、工具注册、存储管理、定制模型训练和实际应用等功能,可用于快速实现实际场景中的应用。开源LLMs作为核心组件:支持在ModelScope社区的多个开源LLMs上进行模型训练。多样化且全面的API:以统一的方式实现与模型API和常见的功能API的无缝集成。为了赋予LLMs工具使用能力,提出了一个全面的框架,涵盖了数据收集、工具检索、工具注册、存储管理、定制模型训练和实际应用的方方面面。

封面图片

Google最新发布PaLM 2,一种新的语言模型,具有更好的多语言和推理能力,同时比其前身PaLM更节省计算资源。

Google最新发布PaLM2,一种新的语言模型,具有更好的多语言和推理能力,同时比其前身PaLM更节省计算资源。PaLM2综合了多项研究进展,包括计算最优的模型和数据规模、更多样化和多语言的数据集、以及更有效的模型架构和目标函数。PaLM2在多种任务和能力上达到了最先进的性能,包括语言水平考试、分类和问答、推理、编程、翻译和自然语言生成等。PaLM2还展示了强大的多语言能力,能够处理数百种语言,并在不同语言之间进行翻译和解释。PaLM2还考虑了负责任的使用问题,包括推理时控制毒性、减少记忆化、评估潜在的伤害和偏见等。

封面图片

阿里开源 Qwen1.5-110B 模型

该模型在基础能力评估中与Meta-Llama3-70B不相上下。支持32KToken的上下文长度。提供包括英语、中文、法语、西班牙语、日语、韩语、越南语等多种语言的多语言支持。模型下载:https://huggingface.co/Qwen/Qwen1.5-110B标签:#通义千问#AI频道:@GodlyNews1投稿:@GodlyNewsBot

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人