一篇写的非常好的文章,详细介绍了如何对大语言模型的质量进行评估。
一篇写的非常好的文章,详细介绍了如何对大语言模型的质量进行评估。流程包括单元测试、人工评估、模型评估和A/B测试,强调快速迭代和数据管理的重要性。一个好的测试流程是模型进步的必要条件,如果没办法准确测试模型质量,就没办法帮助模型进步。下面是大致的内容整理,后面有全文翻译:大语言模型产品的评估系统评估系统对大语言模型(LLM)产品的成功至关重要。许多LLM产品之所以失败,根本原因在于未能创建健壮的评估系统。评估、调试和改进是LLM产品成功的关键,而良好的评估系统可以创造一个良性循环,加速产品的迭代和改进。案例研究中的Lucy就是一个典型的例子,它初期通过提示工程取得了进展,但后来遇到了性能瓶颈,需要建立系统的评估方法来突破瓶颈。评估的类型LLM产品的评估主要分为三个层次:单元测试、人工评估和模型评估、A/B测试。单元测试是通过编写一些断言语句,在开发过程中快速获得反馈。人工评估和模型评估是通过人工检查和训练评估模型来评估整个系统。A/B测试则用于确保AI产品能够驱动期望的用户行为或结果。除了评估整个系统,还需要对子组件如RAG进行单独评估。单元测试的步骤单元测试是LLM产品评估的基础,通常包括三个步骤:编写特定范围的测试、创建测试用例和定期执行测试并追踪结果。编写测试时要针对LLM的不同功能和场景,检验相应的断言。可以利用LLM自动生成测试用例,触发不同的场景。测试应当定期执行,利用CI基础设施可以很方便地实现自动化测试和结果跟踪。测试通过率并不一定要达到100%,而是要在错误容忍度和产品目标之间取得平衡。人工评估和模型评估人工评估和模型评估是更高层次的测试手段。首先要记录LLM系统的跟踪数据,包括用户的输入和系统的响应,为后续分析提供数据基础。在查看数据时,定制化的查看工具和良好的可视化非常重要。将人工评估结果与评估模型的预测对齐,可以极大提高评估的效率。随着评估模型性能的提升,可以渐进式地用自动评估来替代人工评估。微调和数据合成与管理