研究人员新发现18起黑洞吞噬恒星事件美国麻省理工学院近日发布公报说,研究人员领衔的团队在距地球6亿光年范围内新发现了18起黑洞吞

None

相关推荐

封面图片

研究人员新发现18起黑洞吞噬恒星事件

研究人员新发现18起黑洞吞噬恒星事件美国麻省理工学院近日发布公报说,该校研究人员领衔的团队在距地球6亿光年范围内新发现了18起黑洞吞噬恒星的潮汐瓦解事件,使附近宇宙空间中已知的这类事件数量增加了一倍多。相关论文发表在新一期美国《天体物理学杂志》上。新华社报道,潮汐瓦解事件(Tidaldisruptionevent)是宇宙中一种高能爆发现象,即恒星距离超大质量黑洞过近时,被黑洞产生的潮汐力吸入并撕裂的事件。当黑洞享用“恒星盛宴”时,会在电磁波谱多个波段释放巨大能量。此前,科学家主要通过在可见光和X射线波段寻找具有典型特征的爆发来探测潮汐瓦解事件,并已经在地球附近的宇宙中发现十几起这类事件。这项新研究利用红外观测数据从星系中找到更多这类事件。研究人员对美国广域红外线巡天探测卫星所获的观测数据进行了分析,利用特定算法识别出来自约1000个星系的红外爆发信号,这些星系分布在距地球六亿光年范围内。随后,研究人员放大了上述每个星系的红外爆发信号,从中寻找符合潮汐瓦解事件特征的红外辐射模式,最终发现18个清晰的潮汐瓦解事件信号。研究人员说,新发现有助于解答关于潮汐瓦解事件研究的几个关键问题。过去,潮汐瓦解事件大多在所谓的“星暴后星系”中观测到,这是一类曾因大量恒星形成而“光芒四射”但之后已冷却下来的罕见星系。这项新研究在尘埃星系等其他类型的星系中发现了潮汐瓦解事件,表明黑洞可以吞噬一系列星系中的恒星,而不仅仅是“星暴后星系”中的恒星。研究结果还解释了“能量缺失”问题。物理学家曾从理论上预测,潮汐瓦解事件辐射的能量应比实际观测到的更多。该研究认为,如果潮汐瓦解事件发生在尘埃星系中,或许可以解释这种能量差异。尘埃不仅可以吸收可见光和X射线,还可以吸收极紫外波段辐射,其吸收的能量相当于预测的“缺失能量”。此外,研究人员将新发现的潮汐瓦解事件与此前观测结果结合起来估计,一个星系大约平均每五万年就会经历一次黑洞吞噬恒星的潮汐瓦解事件。2024年2月6日3:29PM

封面图片

麻省理工学院研究人员实现前所未有的原子接近度

麻省理工学院研究人员实现前所未有的原子接近度麻省理工学院的物理学家们开发出了一种技术,可以将原子(用箭头表示的球体)排列得比以前更紧密,最小可达50纳米。该研究小组计划利用这种方法将原子操纵到可以产生第一个纯磁性量子门的配置中--这是新型量子计算机的关键构件。在这张图片中,磁相互作用由彩色线条表示。图片来源:研究人员提供;麻省理工学院新闻他们通常的做法是将原子冷却到静止状态,然后用激光将粒子排列到相距500纳米的位置--这个限制是由光波长决定的。现在,麻省理工学院的物理学家们开发出了一种技术,可以将原子排列得更近,最小仅为50纳米。一个红血球的宽度约为1000纳米。物理学家在镝实验中展示了这种新方法,镝是自然界中磁性最强的原子。他们利用新方法操纵了两层镝原子,并将两层原子精确定位在50纳米之间。在这种极端接近的情况下,磁相互作用的强度是相隔500纳米的两层原子的1000倍。不同颜色的激光用于冷却和捕获镝原子。图片来源:研究人员提供更重要的是,科学家们能够测量原子接近所产生的两种新效应。它们增强的磁力导致了"热化",即热量从一层传递到另一层,以及层间的同步振荡。当原子层之间的距离越远,这些效应就越弱。麻省理工学院约翰-麦克阿瑟物理学教授沃尔夫冈-凯特尔(WolfgangKetterle)说:"我们已经把原子的间距从500纳米提高到50纳米,可以利用这一点做很多事情。在50纳米处,原子的行为有了很大的不同,我们正在进入一个新的领域。"凯特尔和他的同事说,这种新方法可以应用于许多其他原子,以研究量子现象。该研究小组计划利用这种技术将原子操纵成可以产生第一个纯磁性量子门的构型--这是新型量子计算机的关键构件。研究小组于5月2日在《科学》杂志上发表了他们的研究成果。该研究的共同作者包括第一作者、物理系研究生杜力,以及皮埃尔-巴拉尔、迈克尔-坎塔拉、朱利叶斯-德-洪德和卢宇坤--他们都是麻省理工学院-哈佛超冷原子中心、物理系和电子研究实验室的成员。研究人员调整激光系统的控制电子装置。图片来源:研究人员提供为了操纵和排列原子,物理学家通常首先将原子云冷却到接近绝对零度的温度,然后使用激光束系统将原子集中到一个光学陷阱中。激光是一种具有特定波长(电场最大值之间的距离)和频率的电磁波。波长将光所能形成的最小图案限制在500纳米,即所谓的光学分辨率极限。由于原子会被特定频率的激光吸引,因此原子会被定位在激光强度的峰值点上。因此,现有技术对原子粒子的定位距离有限,无法用于探索更短距离内发生的现象。凯特尔解释说:"传统技术止步于500纳米,受限的不是原子,而是光的波长。我们现在发现了一种新的光技巧,可以突破这一限制。"该团队的新方法与当前的技术一样,首先冷却原子云--在这种情况下,冷却到大约1微开尔文,仅比绝对零度高出一线--此时,原子接近静止。然后,物理学家可以使用激光将冻结的粒子移动到所需的构型中。然后,杜和他的合作者使用了两束激光,每束激光都有不同的频率(即颜色)和圆偏振(即激光电场的方向)。当这两束激光穿过超冷原子云时,原子会沿着两束激光中任何一束的偏振,向相反的方向自旋。结果,两束激光产生了两组相同的原子,只是自旋方向相反。每束激光都形成了一个驻波,即空间周期为500纳米的电场强度周期性模式。由于它们的偏振不同,每个驻波都能根据原子的自旋吸引和俘获两组原子中的一组。激光可以叠加和调整,使其各自峰值之间的距离小到50纳米,这意味着被引力吸引到各自激光峰值的原子将被同样的50纳米分开。但要做到这一点,激光器必须非常稳定,不受任何外部噪音的影响,例如实验中的震动甚至呼吸声。研究小组意识到,他们可以通过一根光纤来引导这两束激光,从而使它们保持稳定。杜力说:"通过光纤发送两束激光的想法意味着整台机器可能会剧烈晃动,但两束激光彼此保持绝对稳定。"作为对新技术的首次测试,研究小组使用了镝原子--一种稀土金属,它是元素周期表中磁性最强的元素之一,尤其是在超低温条件下。然而,在原子尺度上,该元素的磁相互作用在500纳米的距离上也相对较弱。就像普通冰箱磁铁一样,原子之间的磁吸引力会随着距离的增加而增加,科学家们怀疑,如果他们的新技术能将镝原子间隔到50纳米的距离,就可能观察到磁性原子之间原本微弱的相互作用。坎塔拉说:"我们可能会突然产生磁相互作用,这种作用过去几乎可以忽略不计,但现在却非常强大。"研究小组将他们的技术应用于镝,首先对原子进行过冷处理,然后通过两束激光将原子分成两个自旋组或自旋层。他们发现,两层镝原子确实向各自的激光峰引力,这实际上将原子层分开了50纳米--这是任何超冷原子实验所能达到的最近距离。在这种极度接近的情况下,原子的自然磁性相互作用得到了显著增强,比相距500纳米的原子强1000倍。研究小组观察到,这些相互作用产生了两种新的量子现象:集体振荡,即一层的振动导致另一层同步振动;热化,即一层纯粹通过原子的磁波动将热量传递给另一层。杜指出:"到目前为止,只有当原子处于同一物理空间并发生碰撞时,它们之间才能交换热量。现在,我们看到了被真空隔开的原子层,它们通过波动的磁场交换热量。"该团队的研究成果引入了一种新技术,可用于将多种类型的原子靠近放置。他们还表明,原子放置得足够近时,会表现出有趣的量子现象,可以利用这些现象来制造新的量子材料,并有可能制造出用于量子计算机的磁驱动原子系统。坎塔拉说:"我们将超分辨率方法带入了这一领域,它将成为进行量子模拟的通用工具。可能有许多变体,我们正在研究这些变体"。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1430651.htm手机版:https://m.cnbeta.com.tw/view/1430651.htm

封面图片

麻省理工学院研究人员开发出超薄轻量级太阳能电池

麻省理工学院研究人员开发出超薄轻量级太阳能电池它们的重量是传统太阳能电池板的百分之一,每公斤产生的能量是其18倍,并且是由半导体油墨制成的,使用的印刷工艺在未来可以扩展到大面积的制造。由于这些太阳能电池非常薄和轻,它们可以被贴在许多不同的表面上。例如,它们可以被集成到船帆上,以便在海上提供电力,粘附在灾难恢复行动中部署的帐篷和防水布上,或者应用到无人机的机翼上,以扩大其飞行范围。这种轻量级的太阳能技术可以很容易地集成到建筑环境中,而且安装需求很小。"用于评估一种新的太阳能电池技术的指标通常仅限于其电力转换效率和以每瓦美元计算的成本。同样重要的是可整合性--新技术可以被改造的容易程度。轻质太阳能织物能够实现可整合性,为目前的工作提供了动力。我们努力加快太阳能的采用,因为目前迫切需要部署新的无碳能源,"法里博尔兹-马西赫新兴技术主席、有机和纳米结构电子实验室(ONE实验室)负责人、麻省理工学院纳米实验室主任、描述这项工作的新论文的资深作者弗拉基米尔-布洛维奇说。与Bulović一起撰写论文的还有共同主要作者MayuranSaravanapavanantham,他是麻省理工学院电气工程和计算机科学的研究生;以及JeremiahMwaura,他是麻省理工学院电子研究实验室的研究科学家。该研究最近发表在《小方法》杂志上。瘦身后的太阳能电池传统的硅基太阳能电池是脆弱的,因此它们必须被包裹在玻璃中,并被包装在厚重的铝制框架中,这限制了它们的部署地点和方式。六年前,ONE实验室团队使用一种新兴的薄膜材料生产太阳能电池,其重量非常轻,可以放在肥皂泡上。但是这些超薄的太阳能电池是使用复杂的、基于真空的工艺制造的,这些工艺可能是昂贵的,并且在扩大规模方面具有挑战性。在这项工作中,他们着手开发完全可打印的薄膜太阳能电池,使用基于墨水的材料和可扩展的制造技术。为了生产太阳能电池,他们使用了可打印电子油墨形式的纳米材料。在MIT.nano洁净室工作时,他们使用一个槽模涂布机为太阳能电池结构涂上一层电子材料,该涂布机将电子材料层沉积到准备好的、可释放的基底上,基底的厚度只有3微米。使用丝网印刷(一种类似于在丝印T恤上添加图案的技术),将电极沉积在结构上以完成太阳能模块。然后,研究人员可以将厚度约为15微米的印刷模块从塑料衬底上剥离,形成超轻超薄的太阳能设备。但是这种薄而独立的太阳能模块在处理上具有挑战性,很容易撕裂,这将使它们难以部署。为了解决这一挑战,麻省理工学院的团队寻找一种轻质、灵活和高强度的基材,他们可以将太阳能电池粘在上面。他们认为织物是最佳的解决方案,因为它们提供了机械弹性和灵活性,而且重量增加很少。他们找到了一种理想的材料--一种每平方米仅重13克的复合织物,商业上称为迪尼玛面料。这种织物由纤维制成,其强度非常高,曾被用作绳索,将沉没的邮轮"科斯塔-康科迪亚"号从地中海底部吊起。通过添加一层只有几微米厚的紫外线固化胶水,他们将太阳能模块粘在这种织物的薄片上。这就形成了一个超轻的、机械上坚固的太阳能结构。"虽然直接在织物上印刷太阳能电池可能看起来更简单,但这将限制可能的织物或其他接收表面的选择,使其在化学上和热上与制造设备所需的所有加工步骤兼容。Saravanapavanantham解释说:"我们的方法将太阳能电池的制造与最终的集成工艺分离开来"。胜过传统太阳能电池当他们测试该装置时,麻省理工学院的研究人员发现它在独立的情况下每公斤可以产生730瓦的功率,如果部署在高强度的迪尼玛织物上,每公斤可以产生约370瓦的功率,这比传统太阳能电池的每公斤功率高约18倍。"在马萨诸塞州,一个典型的屋顶太阳能装置约为8000瓦特。他说:"为了产生同样的电力,我们的织物光伏电池只需在房子的屋顶上增加大约20公斤(44磅)的重量。"他们还测试了他们设备的耐用性,发现即使在将织物太阳能电池板滚动和展开500多次后,电池仍能保持其最初发电能力的90%以上。虽然他们的太阳能电池比传统的电池要轻得多,也灵活得多,但它们需要被包裹在另一种材料中,以保护它们免受环境影响。用于制造电池的碳基有机材料可以通过与空气中的水分和氧气相互作用而被改变,这可能会使其性能劣化。将这些太阳能电池包裹在沉重的玻璃中,就像传统的硅太阳能电池的标准做法一样,会将目前的进步价值降到最低,因此该团队目前正在开发超薄的包装解决方案,这只会使目前超轻设备的重量增加一小部分。研究人员正在努力去除尽可能多的非太阳能活性材料,同时仍然保留这些超轻和柔性太阳能结构的外形和性能。例如,可以通过印刷可释放的基材来进一步简化制造过程,相当于用来制造我们设备中其他层的过程。这将加速这项技术向市场的转化。...PC版:https://www.cnbeta.com.tw/articles/soft/1340623.htm手机版:https://m.cnbeta.com.tw/view/1340623.htm

封面图片

麻省理工学院研究人员在太空中发现目前最大最复杂的分子

麻省理工学院研究人员在太空中发现目前最大最复杂的分子科学家利用射线望远镜对恒星形成区NGC6334I的观测,首次在太空中发现了2-甲氧基乙醇。图片来源:研究人员提供该研究小组的开放存取论文《利用ALMA对NGC6334I的观测,旋转光谱和首次星际探测到2-甲氧基乙醇》(RotationalSpectrumandFirstInterstellarDetectionof2-MethoxyethanolUsingALMAObservationsofNGC6334I)发表在《天体物理学杂志通讯》(TheAstrophysicalJournalLetters)上。扎卡里-弗里德(ZacharyT.P.Fried)是麦奎尔研究小组的一名研究生,也是这篇论文的第一作者,他努力拼凑从全球各地收集到的拼图,从麻省理工学院延伸到法国、佛罗里达州、弗吉尼亚州和哥本哈根,从而实现了这一激动人心的发现。弗里德解释说:"我们小组试图了解恒星和太阳系最终将形成的空间区域中存在哪些分子。这使我们能够拼凑出化学是如何随着恒星和行星的形成过程而演变的。我们通过观察分子的旋转光谱来实现这一目标,这是分子在太空中翻滚时发出的独特光斑。这些图案就是分子的指纹(条形码)。要探测太空中的新分子,我们首先必须知道我们要寻找的分子是什么,然后我们可以在地球上的实验室里记录下它的光谱,最后我们再利用望远镜在太空中寻找这种光谱"。麦奎尔小组最近开始利用机器学习来建议寻找好的目标分子。2023年,其中一个机器学习模型向研究人员推荐了一种名为2-甲氧基乙醇的分子。弗里德说:"太空中有许多'甲氧基'分子,如二甲醚、甲氧基甲醇、甲基乙基醚和甲酸甲酯,但2-甲氧基乙醇将是迄今为止所见过的最大、最复杂的分子。"为了利用射线望远镜观测探测到这种分子,研究小组首先需要测量和分析它在地球上的旋转光谱。研究人员将里尔大学(法国里尔)、佛罗里达新学院(佛罗里达州萨拉索塔)和麻省理工学院的麦奎尔实验室的实验结合起来,测量了从微波到亚毫米波(约8到500千兆赫)频率的宽带区域的光谱。从这些测量中收集到的数据允许利用阿塔卡马大型毫米波/亚毫米波阵列(ALMA)对两个不同恒星形成区的观测来寻找该分子:NGC6334I和IRAS16293-2422B。麦奎尔小组的成员与美国国家射电天文台(弗吉尼亚州夏洛茨维尔)和丹麦哥本哈根大学的研究人员一起分析了这些望远镜的观测结果。弗里德说:"最终,我们观测到25条2-甲氧基乙醇的旋转线与NGC6334I观测到的分子信号一致(条码吻合!),从而在这一来源中安全地探测到了2-甲氧基乙醇。这使我们能够推导出NGC6334I分子的物理参数,如丰度和激发温度。这也使得我们能够研究已知星际前体可能的化学形成途径。"像这样的分子发现有助于研究人员更好地理解恒星形成过程中太空分子复杂性的发展。含有13个原子的2-甲氧基乙醇在星际标准中是相当大的--截至2021年,在太阳系外只探测到6种大于13个原子的物质,其中许多是由McGuire的研究小组发现的,而且都是环状结构。Fried说:"对大分子的持续观测以及随后对其丰度的推导,使我们能够进一步了解大分子的形成效率以及它们可能是通过哪些特定反应产生的。此外,由于我们在NGC6334I中探测到了这种分子,而在IRAS16293-2422B中却没有探测到,因此我们获得了一个独特的机会,来研究这两个来源的不同物理条件可能会如何影响可能发生的化学反应"。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1429651.htm手机版:https://m.cnbeta.com.tw/view/1429651.htm

封面图片

麻省理工学院研究人员在细菌上显示运行《毁灭战士》

麻省理工学院研究人员在细菌上显示运行《毁灭战士》据外媒消息,麻省理工学院生物工程研究员LaurenRamlan在完全由大肠杆菌制成的细胞壁内创建了一个显示器,并用它运行了《毁灭战士》。Ramlan将细菌细胞排列在一个网格阵列中,形成1位32x48分辨率的显示器。细胞中荧光阻断基因的激活和停用会导致屏幕点亮并产生游戏帧,该显示器每天能够以略低于三帧的速度显示游戏。由于完全荧光需要70分钟,等待细胞恢复需要8个小时,Ramlan估计使用这种方法完全通关需要600年。投稿:@TNSubmbot频道:@TestFlightCN

封面图片

麻省理工学院研究团队发现宇宙中最古老的恒星 它隐藏在光晕中

麻省理工学院研究团队发现宇宙中最古老的恒星它隐藏在光晕中访问:NordVPN立减75%+外加3个月时长另有NordPass密码管理器麻省理工学院的天文学家发现了三颗宇宙中最古老的恒星,它们就生活在我们的银河系附近。这些恒星位于银河系的"光环"中--光环是包裹着主星系盘的恒星云,它们似乎形成于120亿年至130亿年前,当时第一批星系正在形成。图片来源:SergeBrunier;NASA研究人员将这些恒星命名为"SASS",意为"小增生恒星系统恒星",因为他们相信每颗恒星都曾经属于自己的原始小星系,后来被更大但仍在成长的银河系吸收。如今,这三颗恒星是各自星系仅存的部分。它们环绕着银河系的外围,研究小组怀疑那里可能还有更多这样的古老恒星幸存者。麻省理工学院物理学教授安娜-弗雷贝尔(AnnaFrebel)说:"根据我们对星系形成的了解,这些最古老的恒星肯定应该存在。它们是我们宇宙家谱的一部分。我们现在有了找到它们的新方法"。在发现类似的SASS恒星后,研究人员希望将它们作为超微弱矮星系的类似物,超微弱矮星系被认为是宇宙中现存的一些最早的星系。这些星系被认为是宇宙中幸存下来的最早的星系。这些星系至今仍然完好无损,但由于距离太远、太暗,天文学家无法对它们进行深入研究。SASS恒星可能曾经属于类似的原始矮星系,但它们位于银河系中,因此距离银河系更近,它们可能是了解超暗矮星系演化的一把钥匙。研究人员拿着一个装满了多年来收集的恒星数据的活页夹,其中包括恒星亮度随时间变化的数据。从左至右阿南达-桑托斯(AnandaSantos)、凯西-费恩伯格(CaseyFienberg)和安娜-弗雷贝尔(AnnaFrebel)。图片来源:研究人员提供弗雷贝尔说:"现在我们可以在银河系中寻找更多更亮的类似物,研究它们的化学演变,而不必追逐这些极其暗淡的恒星。"她和同事们于5月14日在《皇家天文学会月刊》(MNRAS)上发表了他们的研究成果。这项研究的共同作者包括约旦扎尔卡大学的穆罕默德-马尔迪尼(MohammadMardini)、23岁的希拉里-安达莱斯(HillaryAndales)以及麻省理工学院的在读本科生阿南达-桑托斯(AnandaSantos)和凯西-菲恩伯格(CaseyFienberg)。该团队的发现源于一个课堂理念。在2022年秋季学期,弗雷贝尔开设了一门新课程8.S30(观测恒星考古学),让学生学习分析古代恒星的技术,然后将这些工具应用于以前从未研究过的恒星,以确定它们的起源。安达莱斯说:"虽然我们的大多数课程都是从基础教起,但这门课却让我们立即站在了天体物理学研究的前沿。"学生们根据弗雷贝尔多年来从拉斯坎帕纳斯天文台的6.5米麦哲伦-克莱望远镜收集的恒星数据进行研究。她把这些数据的硬拷贝放在她办公室的一个大活页夹里,学生们用这些数据来寻找感兴趣的恒星。特别是,他们正在寻找大爆炸后不久形成的古老恒星,大爆炸发生在138亿年前。当时,宇宙主要由氢和氦组成,其他化学元素(如锶和钡)的丰度非常低。因此,学生们在弗雷贝尔的活页夹中寻找具有光谱或星光测量值的恒星,这些光谱或星光测量值显示锶和钡的丰度很低。他们的搜索范围缩小到了麦哲伦望远镜最初在2013年至2014年间观测到的三颗恒星。天文学家从未对这些恒星进行过后续研究,以解读它们的光谱并推断它们的起源。因此,它们是弗雷贝尔班学生的理想候选对象。学生们学习了如何描述恒星的特征,以便为分析这三颗恒星的光谱做好准备。他们能够利用各种恒星模型确定每一颗恒星的化学成分。恒星光谱中与特定波长的光相对应的特定特征的强度与特定元素的丰度相对应。在完成分析后,学生们自信地得出结论:与他们的参照恒星--我们的太阳相比,这三颗恒星的锶、钡和其他元素(如铁)的丰度确实很低。事实上,与今天的太阳相比,其中一颗恒星所含的铁与氦的比例还不到十万分之一。桑托斯回忆说:"我们花了很多时间盯着电脑,进行大量的调试,疯狂地互相发短信和电子邮件,才弄明白这个问题。"这是一个很大的学习曲线,也是一次特殊的经历。"这些恒星的低化学丰度确实暗示它们最初形成于120亿到130亿年前。事实上,它们的低化学特征与天文学家之前测量到的一些古老的超微弱矮星系相似。研究小组的恒星是否起源于类似的星系?它们又是如何来到银河系的呢?凭直觉,科学家们查看了这些恒星的轨道模式以及它们在天空中的移动方式。这三颗恒星位于银河光环的不同位置,估计距离地球约3万光年。(作为参考,银河系的圆盘横跨10万光年)。研究小组利用盖亚天体测量卫星的观测数据追溯了每颗恒星围绕银河中心的运动轨迹,他们注意到了一个奇怪的现象:相对于主圆盘中大多数像赛车场上的赛车一样运动的恒星,这三颗恒星似乎都走错了方向。在天文学中,这种现象被称为"逆行",是天体曾经"吸积"或从别处吸入的提示。弗雷贝尔说:"只有把明星扔到错误的地方,才能让他们与其他明星走错方向。"这三颗恒星的运行方式与银河系盘的其他部分甚至光环都完全不同,再加上它们的化学丰度很低,这有力地证明了这些恒星确实很古老,曾经属于更古老、更小的矮星系,它们以随机的角度坠入银河系,并在数十亿年后继续其顽强的运行轨迹。弗莱贝好奇地想知道,天文学家以前分析过的光环中的其他古老恒星是否也有逆行现象,于是他翻阅了科学文献,发现还有65颗同样具有低锶和低钡丰度的恒星似乎也在逆行。研究小组正在继续寻找其他古老的SASS恒星,他们现在有了一个相对简单的方法:首先,寻找化学丰度低的恒星,然后追踪它们的轨道模式,寻找逆行运动的迹象。在银河系中的4000多亿颗恒星中,他们预计这种方法将发现一小部分宇宙中最古老的恒星。弗莱贝计划在今年秋天重开这门课,回顾第一门课程和三位将成果发表的学生,他充满了敬佩和感激之情。"能与三位女大学生共事真是太棒了。这对我来说还是第一次,"她说。"这确实是麻省理工学院工作方式的一个范例。我们就是这样做的。无论谁说'我想参加',他们都能做到,而且会有好事发生"。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1431180.htm手机版:https://m.cnbeta.com.tw/view/1431180.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人