日本科学家将雄鼠体细胞变成卵细胞并产下后代

日本科学家将雄鼠体细胞变成卵细胞并产下后代"10年内两名男性生孩子是可能的。"日本九州大学的KatsuhikoHayashi教授说到,他是实验室培养卵子和精子领域的先驱,3月8日在伦敦第三届人类基因组编辑国际峰会上介绍了这一遗传学突破,相关论文已提交发表《自然》杂志。首先从雄性老鼠身上提取皮肤细胞,将其重新编程为干细胞样状态,以产生所谓的诱导多能干(iPS)细胞。然后删除这些细胞的Y染色体,并替换为从另一个细胞"借来"的X染色体,最后将它们培养在卵巢类器官中从而形成卵子。当与正常精子受精后,科学家们获得了大约600个胚胎,植入代孕老鼠体内从而诞生了七只老鼠幼崽。https://www.nature.com/articles/d41586-023-00717-7投稿:@ZaiHuabot频道:@TestFlightCN

相关推荐

封面图片

男性生娃不是梦 科学家首次让2只雄性老鼠产仔

男性生娃不是梦科学家首次让2只雄性老鼠产仔据介绍,该技术包括首先从雄性小鼠身上获取皮肤细胞,将其转化为干细胞。然后删除其中的Y染色体、复制X染色体,将干细胞编辑成卵细胞。随后,拥有两个X染色体的这些细胞被放置在一个卵巢类器官中进行培养,从而形成卵子。与正常精子受精后,科学家们获得了大约600个胚胎,并将其植入代孕老鼠体内。最终,代孕老鼠诞生了7只小鼠幼崽。林克彦教授表示,这项研究的目的是为罹患不孕不育症的夫妻提供一种生育治疗方法,但这项技术仍处于非常早期阶段,由于培育出的卵子质量低劣,现阶段并不能安全地用于人类,但他预测,有望在十年内解决当前问题。一旦该技术证明可安全使用,可作为同性伴侣生育治疗,以及协助女性无法自己生产卵子的不孕夫妇。尽管该技术提高了男性拥有自己孩子的可能性,但林克彦并不赞成男性用自己的精子和人工创造的卵子来创造婴儿,他表示:“从技术上讲是可以实现的,但不确定是否安全或被社会接受”。...PC版:https://www.cnbeta.com.tw/articles/soft/1348785.htm手机版:https://m.cnbeta.com.tw/view/1348785.htm

封面图片

科学家利用CRISPR基因编辑消除了癌细胞中多余的染色体

科学家利用CRISPR基因编辑消除了癌细胞中多余的染色体具有额外染色体的细胞与癌症的发展有关,但一项新的研究发现这也可能是它们的弱点该研究的高级作者JasonSheltzer说:"长期以来,我们可以观察到非整倍体,但不能操纵它。我们只是没有合适的工具。但在这项研究中,我们利用基因工程技术CRISPR开发了一种新的方法来消除癌细胞中的整个染色体,这是一个重要的技术进步。能够以这种方式操纵非整倍体染色体,将使我们更深入地了解它们的功能。"首先,该团队专注于一种非整倍体,即细胞在1号染色体上获得一个被称为"q臂"的结构的第三个拷贝。这种错误从早期阶段就在多种癌症类型中发现,并与疾病的发展有关。研究人员开发了一种工具,他们称之为使用CRISPR靶向技术恢复非整倍体细胞中的二分裂(ReDACT),当他们用它来消除这些额外的染色体时,他们发现这些细胞失去了形成恶性肿瘤的能力。经过仔细检查,他们发现了一种机制,即非整倍体可能会促进癌症的发展--刺激癌症生长的特定基因被编码在三条染色体上,而不是通常的两条。接下来,研究小组测试了这种机制是否可以作为癌症的治疗目标加以利用。一个被称为UCK2的基因先前已被发现对某些药物敏感,这里的研究人员发现,这使得具有1号染色体额外拷贝的细胞(因此是UCK2的第三个拷贝)对这些药物更加敏感。研究小组将正常细胞和非整倍体细胞混合成批,后者占细胞的20%。他们发现,在没有干预的情况下,非整倍体细胞将在9天后增长到占批次的75%。但当用针对UCK2的药物治疗时,非整倍体细胞在9天后下降到仅占该批细胞的4%。Sheltzer说:"这告诉我们,非整倍体可以作为癌症的一个治疗目标。几乎所有的癌症都是非整倍体,所以如果你有某种方法选择性地针对那些非整倍体细胞,理论上这可能是一种针对癌症的好方法,同时对正常的、非癌症的组织影响最小。"当然,这项研究仍然处于非常早期的阶段,到目前为止只在培养的细胞中进行了测试。但这是一个耐人寻味的想法,最终可能开启新的癌症治疗方法,而且该团队现在正在努力转向动物测试。这项研究发表在《科学》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1370003.htm手机版:https://m.cnbeta.com.tw/view/1370003.htm

封面图片

科学家发现染色体几乎是一种可流动的液体

科学家发现染色体几乎是一种可流动的液体来自法国国家科学研究中心、居里研究所和索邦大学的研究人员首次成功地在活细胞中对染色体进行了物理操作。他们发现,在细胞分裂阶段之外,通过使用磁铁施加不同的力,染色体实际上是可以流动的,并且几乎是液体。这项研究最近发表在权威的《科学》杂志上。PC版:https://www.cnbeta.com/articles/soft/1320869.htm手机版:https://m.cnbeta.com/view/1320869.htm

封面图片

科学家在突破性基因研究中设计出含有50%合成DNA的酵母菌

科学家在突破性基因研究中设计出含有50%合成DNA的酵母菌实验室培养皿中生长着24,000个酵母菌群,每个菌群都能产生不同的色素,从而创造出一件艺术品AleksandraWudzinska,纽约大学朗贡医疗中心博克实验室;细胞出版社提供世界上第一个完全人工合成的生物体诞生于2010年,此后数年经过不断调整,使其能够自行生长和分裂,甚至移动。但这种生物和其他类似生物都是细菌,它们的基因组非常简单,只有一条染色体。其他科学家一直在努力创造更复杂生命形式的合成版本,包括合成酵母项目(Sc2.0),他们的目标是创建一个完全合成的酿酒酵母基因组,这将使它成为第一个人造真核生物--包括所有植物和动物在内的一大类生命。酵母将其DNA包在16条染色体中,该项目之前已经合成了其中的6条。在新一批研究中,Sc2.0科学家又增加了8条染色体,并进行了一系列实验,探索酵母的生物学特性,以及在合成版本中可以安全地做出哪些改变。对基因组的主要改动之一是删除大段重复的DNA。这些区域并不特别编码任何东西,但它们会相互重组,导致结构发生重大变化。研究小组表示,通过删除这些区域,他们可以更好地控制基因组,使其更加稳定。含有31%合成DNA的酵母细胞在另一项研究中,研究人员创建了一个全新的染色体,其中含有编码转运核糖核酸(tRNA)的DNA片段。研究小组说,这些DNA序列很容易出现不稳定的情况,因此把它们从基因组中通常的位置剪切出来,放入自己的染色体中,也有助于提高整个基因组的稳定性。其他研究小组将酵母的生存能力推向了极限,他们对染色体的结构进行了重大改变,如将染色体融合在一起、将染色体的"臂"倒置或故意将染色体折叠得不正确。他们发现,酵母细胞能够承受的变化程度令人惊讶,而且仍然能够茁壮成长。接下来,Sc2.0科学家开始将尽可能多的合成染色体组装到一个活的酵母细胞中。他们采用了一种渐进技术,即用每种酵母菌都带有一条合成染色体的菌株进行杂交,然后挑选出获得了父母双方变异的后代。通过世代重复这一过程,他们最终得到了含有6.5条合成染色体的酵母菌株。最后,他们利用在该项目中开发的一项新技术,将另一条染色体替换到这一菌株中,从而得到了基因组由7.5条合成染色体组成的酵母菌,这意味着它是第一个合成DNA超过50%的菌株。尽管科学家们花了15年时间才行至半路,但他们预测后面的工作将一马平川,只需再花一年时间,他们就能培育出100%合成的酵母菌株。最后两条染色体已经合成,有望在未来几个月内发表论文。之后就是繁琐的编辑和调试工作,以确保酵母仍能存活。这个项目的成果-完全合成的酵母菌株对世界的帮助远比你想象的要大得多。目前,酵母不仅能生产食物,还能生产抗生素、药物、生物燃料和一系列其他有用的分子。可以对酵母进行改造,使其更有效地进行生产,或扩大其生产范围,以解决其他重大问题。这项研究的10篇论文发表在《细胞》、《分子细胞》和《细胞基因组学》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1396821.htm手机版:https://m.cnbeta.com.tw/view/1396821.htm

封面图片

我国科学家全球首次实现哺乳动物完整染色体重排

我国科学家全球首次实现哺乳动物完整染色体重排记者从中国科学院获悉,我国科学家经过4年的研究,全球首次实现了哺乳动物完整染色体重排,并创造出具有全新染色体组型的实验小鼠。这项研究是我国在生物工程技术领域的重要突破,为人类探索哺乳动物进化、染色体疾病研究等提供了新方法。该成果今天(26日)在国际学术期刊《科学》上在线发表。染色体重排,也就是染色体发生断裂与别的染色体相连构成新的染色体。在漫长的生物演化过程中染色体会发生重排,此变化是物种进化的重要驱动力,但它是如何影响物种进化的,在科学界一直没有定论。中国科学院动物研究所和北京干细胞与再生医学研究院李伟研究员与周琪研究员科研团队合作,利用实验小鼠单倍体胚胎干细胞和基因编辑工具,成功将其最长的1号和2号染色体进行正反连接,并将中等长度的5号和4号染色体进行首尾连接,结果发现染色体连接过程中可能会发生染色体的断裂和重新连接。这表明,来自实验小鼠的两条独立存在的染色体在基因编辑后,可以以非同源末端连接修复的方式连接为一条染色体。这是全球首次实现了哺乳动物的完整染色体重排,这在合成生物学上是一个新的突破。在此基础上,研究人员进一步研究了特定染色体重排连接所产生的影响,发现哺乳动物细胞的染色体长度存在一定限制。他们通过单倍体干细胞注射到卵母细胞的方式,成功得到染色体连接的小鼠。一系列新发现证明,染色体重排会对哺乳动物生殖、发育、进化、行为等多方面产生影响,为进化生物学研究提供了新的思路。中国科学院动物研究所研究员李伟:我们人类的很多疾病,比方说在一些白血病,在一些生殖不育的疾病里头,很多都是因为染色体重排导致的,那现在我们拥有了这项技术,我们就可以利用小鼠的模型在实验室里头来模拟这些疾病,然后进而寻找它们的发病机制,找到它们的治疗方法,为人类的健康造福。(总台央视记者褚尔嘉刘彤)...PC版:https://www.cnbeta.com/articles/soft/1308861.htm手机版:https://m.cnbeta.com/view/1308861.htm

封面图片

科学家开发出形成人类人工染色体的新技术

科学家开发出形成人类人工染色体的新技术能在人体细胞内发挥作用的人造人类染色体有可能彻底改变基因疗法包括某些癌症的治疗方法,并有许多实验室用途。然而,巨大的技术挑战阻碍了它们的发展。现在,宾夕法尼亚大学佩雷尔曼医学院研究人员领导的团队在这一领域取得了重大突破,有效地绕开了一个常见的绊脚石。在最近发表在《科学》(Science)杂志上的一项研究中,研究人员解释了他们是如何设计出一种高效技术,利用单个长的设计DNA构建体来制造HACs的。以前制造HACs的方法一直受到以下事实的限制:用于制造HACs的DNA构建体往往会以不可预测的长序列和不可预测的重排方式连接在一起--"多聚化"。新方法可以更快、更精确地制作HAC,从而直接加快DNA研究的速度。假以时日,再加上有效的传输系统,这项技术就能为癌症等疾病带来更好的工程细胞疗法。全面改造HAC设计宾夕法尼亚大学生物化学与生物物理学埃尔德里奇-里夫斯-约翰逊基金会教授本-布莱克(BenBlack)博士说:"从根本上说,我们彻底改变了HAC设计和输送的旧方法。我们制造的HAC对于生物技术应用的最终部署非常有吸引力,例如,需要对细胞进行大规模基因工程的应用。另外一个好处是,它们与天然染色体同时存在,而无需改变细胞中的天然染色体。"首批人工染色体组是25年前开发的,人工染色体组技术在细菌和酵母等低等生物较小、较简单的染色体方面已经非常先进。而人类染色体则是另一回事,这主要是因为人类染色体的体积更大,中心粒(即X型染色体臂连接的中心区域)更复杂。研究人员已经能够用添加到细胞中的自连接DNA长度来形成小型的人造人类染色体,但这些DNA长度的多聚体具有不可预测的组织和拷贝数--这使它们的治疗或科学用途变得复杂,而且由此产生的HAC有时甚至最终结合了宿主细胞中的天然染色体位点,使对它们的编辑变得不可靠。在他们的研究中,宾夕法尼亚大学医学院的研究人员通过多种创新设计出了改进的HAC:其中包括含有更大、更复杂中心粒的更大初始DNA构建体,这使得HACs能够从这些构建体的单个拷贝中形成。在向细胞递送时,他们使用了一种基于酵母细胞的递送系统,该系统能够携带更大的载荷。布莱克说:"例如,我们没有试图抑制多聚化,而是绕过了这个问题,增加了输入DNA构建的大小,使其自然倾向于保持可预测的单拷贝形式。"研究人员的研究表明,与标准方法相比,他们的方法能更有效地形成有活力的HAC,并能产生在细胞分裂过程中能自我繁殖的HAC。优势和未来应用人工染色体的潜在优势有很多--假定它们可以很容易地输送到细胞中,并像天然染色体一样运作。与基于病毒的基因递送系统相比,人工染色体将为表达治疗基因提供更安全、更高效、更持久的平台,而基于病毒的基因递送系统可能会引发免疫反应,并涉及有害的病毒插入天然染色体。细胞中正常的基因表达还需要许多局部和远距离的调控因子,而这些因子几乎不可能在类似染色体的环境之外进行人工复制。此外,人工染色体与相对狭窄的病毒载体不同,它允许表达大型、合作性的基因组合,例如构建复杂的蛋白质机器。布莱克预计,他的研究小组在这项研究中采用的同样广泛的方法将有助于为其他高等生物制造人工染色体,包括用于农业应用的植物,如抗虫、高产作物等。编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1424784.htm手机版:https://m.cnbeta.com.tw/view/1424784.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人