Google DeepMind 通过深度学习发现了数百万种新材料

GoogleDeepMind通过深度学习发现了数百万种新材料从芯片、电池、超导体到太阳能板等现代技术都依赖于无机晶体。为了实现新技术,晶体必须稳定,否则就会分解,而每个新的、稳定的晶体背后都可能需要数月的艰苦实验。GoogleDeepMind的AI模型GNoME(材料探索的图网络)新发现了220万种晶体,这相当于约800年的知识价值;其中最稳定的38万个已提交到研究界数据库,这些候选有可能存在用于开发未来变革性技术的材料。世界各地实验室的研究员目前创建了736个此类新结构;劳伦斯伯克利国家实验室A-Lab的人工智能自主快速合成41个。投稿:@TNSubmbot频道:@TestFlightCN

相关推荐

封面图片

DeepMind:通过AI发现了数百万种新材料DeepMind利用其深度学习工具:GNoME,发现了超过220万种新的晶体材料。

封面图片

DeepMind人工智能工具将材料科学带入下一个800年

DeepMind人工智能工具将材料科学带入下一个800年发现具有非同寻常特性的新材料可以让技术的雪球滚动起来,最终推动社会向新的方向发展--但到目前为止,这是一个艰苦缓慢的过程,需要进行大量的试错实验。例如,无机晶体材料在首次合成时可能会显示出巨大的潜力,但如果晶体不能保持稳定,所有这些潜力都将化为乌有;如果发现一种新晶体可以提高电池或电子产品的性能,但它却会崩解和降解,那就没有任何好处了。而这正是DeepMind的"材料探索图网络"(GraphNetworksforMaterialsExploration,GNoME)深度学习工具刚刚发布的消息有望带来巨大变革的地方。GNoME人工智能识别出的稳定无机晶格结构GNoME工具已经发现了不少于220万种新的无机晶体,并将其中38万种晶体鉴定为最稳定的晶体,为研究人员提供了一份经过预先筛选的新材料清单,以便他们去合成新材料,进行实验研究。其中约736种材料已经在世界各地的研究实验室中独立完成。"在这些候选材料中,有可能开发出未来变革性技术的材料,从为超级计算机提供动力的超导体,到提高电动汽车效率的下一代电池,不一而足。"Google博客这样叙述。DeepMind团队介绍说:"在这些新发现中有5.2万种与石墨烯类似的新型层状化合物,它们有可能随着超导体的开发而彻底改变电子技术,在此之前,已经发现了大约1000种此类材料。我们还发现了528种潜在的锂离子导体,是之前研究的25倍,可用于提高充电电池的性能。"Google正在将GNoME的所有发现和预测提供给"下一代材料项目"(NextGenMaterialsProject),DeepMind在该项目中为人工智能提供了大量的训练材料。虽然其他人工智能系统在发现新晶体方面做了大量工作,但GNoME系统现在已经以前所未有的规模完成了这项工作,并以前所未有的准确性预测出哪些晶体结构将足够稳定,值得进行实验。最终的结果是,浪费的时间将大大减少;研究人员将能够把精力集中在新材料结构的巨大宝库上,而不会因为晶体不稳定而走入许多死胡同。自主实验室技术有望进一步加速材料科学的发展图/伯克利实验室更重要的是,DeepMind团队还与伯克利实验室合作,创建并演示了一个能够自主合成这些新晶体的机器人实验室。在今天发表的一篇论文中,团队报告说,机器人实验室已经成功合成了41种这种新材料--进一步加速合成的潜力令人瞩目。这两个项目可能会开启数不清的技术发展之路--它们鲜明地表明,人工智能系统已经开始在生活的几乎每一个领域引发剧烈动荡。晶体发现论文和自主实验室论文在《自然》杂志上公开发表。...PC版:https://www.cnbeta.com.tw/articles/soft/1400815.htm手机版:https://m.cnbeta.com.tw/view/1400815.htm

封面图片

磁铁的魔力 - 人工智能如何革新材料发现的方式

磁铁的魔力-人工智能如何革新材料发现的方式艾姆斯国家实验室(AmesNationalLaboratory)的科学家们设计出一种机器学习模型,可以在不使用稀缺元素的情况下预测新型磁体材料。这种以材料居里温度为重点的创新方法为未来的技术应用提供了一条更具可持续性的道路。高性能磁体的重要性高性能磁体对于风能、数据存储、电动汽车和磁制冷等技术至关重要。这些磁体包含钴和稀土元素(如钕和镝)等关键材料。这些材料需求量大,但供应有限。这种情况促使研究人员想方设法设计出减少关键材料的新型磁性材料。磁铁照片资料来源:美国能源部埃姆斯国家实验室机器学习的作用机器学习(ML)是人工智能的一种形式。它由计算机算法驱动,利用数据和试错算法不断改进预测结果。研究小组利用居里温度的实验数据和理论建模来训练ML算法。居里温度是材料保持磁性的最高温度。"找到居里温度高的化合物是发现能在高温下保持磁性的材料的重要第一步,"艾姆斯实验室科学家、研究团队高级负责人雅罗斯拉夫-穆德里克(YaroslavMudryk)说。"这方面不仅对永磁体的设计至关重要,而且对其他功能磁性材料的设计也至关重要。"穆德里克认为,发现新材料是一项具有挑战性的活动,因为传统上是通过实验来寻找新材料,这既昂贵又耗时。然而,使用ML方法可以节省时间和资源。艾姆斯实验室科学家、研究小组成员普拉桑特-辛格(PrashantSingh)解释说,这项工作的主要部分是利用基础科学开发一个ML模型。研究小组利用实验已知的磁性材料训练他们的ML模型。这些材料的相关信息确定了若干电子和原子结构特征与居里温度之间的关系。这些模式为计算机寻找潜在候选材料提供了基础。模型测试和验证为了验证模型,研究小组使用了基于铈、锆和铁的化合物。这个想法是由艾姆斯实验室的科学家、研究小组成员安德烈-帕拉修克(AndriyPalasyuk)提出的。他希望重点研究基于地球丰富元素的未知磁体材料。帕拉修克说:"下一个超级磁铁不仅要性能卓越,还要依赖丰富的国产元件。"帕拉修克与艾姆斯实验室的另一位科学家、研究小组成员泰勒-德尔-罗斯(TylerDelRose)合作,对合金进行了合成和表征。他们发现,ML模型成功地预测了候选材料的居里温度。这一成功是为未来技术应用设计新型永磁体的高通量方法迈出的重要的第一步。辛格说:"我们正在为可持续发展的未来编写物理信息机器学习。"...PC版:https://www.cnbeta.com.tw/articles/soft/1382473.htm手机版:https://m.cnbeta.com.tw/view/1382473.htm

封面图片

研究发现了数百万人安装的恶意VSCode扩展程序

研究发现了数百万人安装的恶意VSCode扩展程序最近的一项研究发现,VSCodeMarketplace中存在数千个安装量达数百万次的扩展程序。之前的报告已经指出VSCode的安全漏洞,允许扩展程序和发布者冒充以及窃取开发者认证令牌的扩展程序。研究人员AmitAssaraf和Itay在他们最近的实验中,发现了多个恶意的VisualStudio扩展程序,这些扩展程序被称为“ThemeDarcula”,并且被用来盗取密码。为了防止恶意扩展程序的传播,微软为VSCodeExtensionsMarketplace实施了多项安全措施,例如自动扩展程序扫描工具,以检测和移除市场上的恶意扩展程序,以及用户评论和评分系统,用于识别和报告恶意扩展程序。关注频道@ZaiHuaPd频道爆料@ZaiHuabot

封面图片

科学家们错了:微小晶体揭示月球比之前认为的要古老数百万年

科学家们错了:微小晶体揭示月球比之前认为的要古老数百万年西北大学的科学家参与了对宇航员在阿波罗17号任务中采集的月球样本的分析。通过分析1972年阿波罗17号任务中收集的月球微小晶体,科学家们修正了月球的估计年龄。以前认为月球的年龄为44.25亿年,新的分析表明月球的年龄约为44.6亿年,比以前的估计年龄大4000万年。在菲尔德博物馆和格拉斯哥大学研究人员的领导下,西北大学的原子探测断层扫描设备使这项研究成为可能,它"确定"了样本中最古老晶体的年龄。通过揭示这些隐藏在月球尘埃中的锆石晶体的年龄,研究人员得以拼凑出月球形成的时间表。这项研究最近发表在《地球化学展望通讯》(GeochemicalPerspectivesLetters)杂志上。太空研究的技术演变西北大学的迪特尔-伊斯海姆(DieterIsheim)是这项研究的合著者之一,他说:"这项研究证明了自1972年最后一次载人月球任务返回地球以来,我们取得了巨大的技术进步。这些样本是在半个世纪前被带到地球的,但直到今天我们才拥有必要的工具来进行必要水平的微观分析,包括原子探针层析成像"。显微镜下的月球锆石晶粒。资料来源:JennikaGreer通过逐原子分析,研究人员能够计算出锆石晶体中有多少原子发生了放射性衰变。当一个原子发生衰变时,它会脱落质子和中子,转化成不同的元素。例如,铀会衰变成铅。由于科学家已经确定了这一过程需要多长时间,因此他们可以通过观察铀原子和铅原子的比例来评估样本的年龄。该研究的资深作者、菲尔德博物馆的菲利普-赫克(PhilippHeck)说:"放射性测年的原理有点像沙漏。在沙漏中,沙子从一个玻璃球流到另一个玻璃球,时间的流逝通过沙子在较低玻璃球中的积累来表示。辐射测年的原理与此类似,通过计算母原子的数量和它们转化成的子原子的数量。由于转化率是已知的,因此可以计算出时间的流逝。"Isheim是西北大学麦考密克工程学院材料科学与工程系的研究副教授,同时也是西北大学原子探针断层扫描中心(NUCAPT)的负责人。麦考密克材料科学与工程荣誉教授、NUCAPT创始主任大卫-塞德曼(DavidSeidman)也是这项研究的合著者。赫克是菲尔德博物馆罗伯特-普利兹克陨石和极地研究馆馆长、内高尼互动研究中心高级主任和芝加哥大学教授。格拉斯哥大学研究副教授JennikaGreer是这项研究的第一作者。研究开始时,她还是赫克实验室的博士生。主要作者詹妮卡-格里尔正在使用原子探测器。图片来源:西北大学迪特尔-伊斯海姆(DieterIsheim)月球的形成年代40多亿年前,当太阳系还很年轻,地球还在成长的时候,一个火星大小的巨大天体撞上了地球。巨大的块体脱离地球形成了月球,撞击的能量熔化了最终成为月球表面的岩石。赫克说:"当月球表面像那样熔化时,锆石晶体就无法形成和存活。因此,月球表面的任何晶体一定是在月球岩浆海洋冷却后形成的。否则,它们就会被融化,其化学特征也会被抹去。"由于晶体一定是在岩浆海洋冷却后形成的,因此确定锆石晶体的年龄将揭示月球的最小可能年龄。但是,为了确定月球的最大可能年龄,研究人员求助于西北大学的原子探测层析成像仪器。格里尔说:"在原子探针层析成像中,我们首先使用聚焦离子束显微镜将一块月球样本削成非常锋利的尖端,就像一个非常漂亮的削铅笔器。然后,我们使用紫外线激光将原子从尖端表面蒸发出来。原子通过质谱仪,它们移动的速度告诉我们它们有多重,进而告诉我们它们是由什么构成的。"在确定了样本中的材料并进行了辐射测定之后,研究人员得出结论,最古老的晶体大约有44.6亿年的历史。这意味着月球至少有这么古老。赫克说,了解月球形成的时间非常重要,因为"月球是我们行星系统中的重要伙伴。它稳定了地球的自转轴。它是一天有24小时的原因。它是我们拥有潮汐的原因。没有月球,地球上的生命将面目全非。这是我们想要更好地了解的自然系统的一部分,而我们的研究为整个画面提供了一块小小的拼图"。...PC版:https://www.cnbeta.com.tw/articles/soft/1401761.htm手机版:https://m.cnbeta.com.tw/view/1401761.htm

封面图片

突破性的全球研究发现21种新型激光材料

突破性的全球研究发现21种新型激光材料尽管如此,生产有机固态激光器仍具有挑战性,要确定可行的新材料,可能需要进行15万次以上的实验,因此充分探索这一领域可能需要花费许多人的一生。事实上,在过去的几十年中,仅有10-20种新型OSL材料通过了测试。多伦多大学加速联盟的研究人员接受了这一挑战,并利用自驱动实验室(SDL)技术,在几个月内就合成并测试了1000多种潜在的OSL材料,并发现了至少21种性能最佳的OSL增益候选材料。SDL使用人工智能和机器人合成等先进技术来简化新型材料的鉴定过程,这里指的是具有特殊发光特性的材料。迄今为止,SDL通常局限于一个地理位置的一个物理实验室。发表在《科学》(Science)杂志上的这篇题为《有机激光发射器的异地异步闭环发现》(DelocalizedAsynchronousClosed-LoopDiscoveryofOrganicLaserEmitters)的论文,展示了研究团队如何利用分布式实验的概念,即在不同的研究地点分工合作,更快地实现共同目标。来自加拿大多伦多和温哥华、苏格兰格拉斯哥、美国伊利诺伊和日本福冈的实验室参与了这项研究。分布式实验的优势通过这种方法,每个实验室都能贡献自己独特的专业知识和资源--这最终为项目的成功发挥了关键作用。这种由云平台管理的分散式工作流程不仅提高了效率,还能快速复制实验结果,最终实现了发现过程的民主化,并加速了下一代激光技术的开发。"这篇论文表明,闭环方法可以去局部化,研究人员可以从分子状态一直深入到设备,你可以加速发现商业化进程中非常早期的材料,"加速联合会主任AlánAspuru-Guzik博士说。"该团队设计了一个从分子到设备的实验,最终设备在日本制造。这些装置在温哥华进行了放大,然后转移到日本进行表征。"这些新型材料的发现标志着分子光电子学领域的重大进展。它为增强OSL器件的性能和功能铺平了道路,并为未来材料科学和自动驾驶实验室领域的脱域发现活动开创了先例。编译来源:ScitechDailyDOI:10.1126/science.adk9227...PC版:https://www.cnbeta.com.tw/articles/soft/1433522.htm手机版:https://m.cnbeta.com.tw/view/1433522.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人