为什么细嚼慢咽吃不胖?——新研究揭示进食节奏如何影响体重

为什么细嚼慢咽吃不胖?——新研究揭示进食节奏如何影响体重新研究发现,位于脑干的特定神经回路负责控制餐食终止,并且受到口腔和内脏反馈信号的调控。当我们进食时,口腔的味觉信号和胃部的机械反馈信号会触发神经元的活动。研究表明,细嚼慢咽的进食方式可以通过口腔感觉信号向脑干发送反馈信号,减缓进食速度,从而控制进食的节奏。相比之下,快速进食会导致神经元活动的持续性抑制减少,进而增加进食的速度和摄入量。此外,研究还发现,进食节奏对饱腹感的持续时间也有影响。细嚼慢咽的进食方式可促使肠道神经元的活动,延长饱腹感的持续时间,从而减少进食频率和总摄入量。相关:来源:;Viagoddaneel投稿:@TNSubmbot频道:@TestFlightCN

相关推荐

封面图片

低温如何促进食欲?新发现可能改进减肥疗法

低温如何促进食欲?新发现可能改进减肥疗法斯克里普斯研究所的神经科学家们现在已经找到了低温时导致食欲增加的大脑回路。在最近发表在《自然》(Nature)杂志上的这项新研究中,研究人员确定了一组神经元,它们是小鼠这种与寒冷有关的觅食行为的"开关"。这一发现可能为代谢健康和减肥带来潜在的治疗方法。这项研究的资深作者、斯克里普斯研究中心化学与化学生物学阿比德-生动讲席教授、副教授叶立博士说:"这是哺乳动物的一种基本适应机制,未来针对这种机制的治疗可能会增强寒冷或其他形式脂肪燃烧对新陈代谢的益处。"该研究的第一作者是叶实验室博士后助理研究员NeerajLal博士。由于暴露在寒冷环境中会增强能量消耗以保持温暖,冷水浸泡和其他形式的"冷疗法"已被探索作为减肥和改善代谢健康的方法。冷疗法的一个缺点是,人类进化出的对寒冷的反应并不是为了减肥(在前现代频繁的食物匮乏时期,这种效果可能是致命的)。与节食和运动一样,寒冷会增加食欲,从而抵消任何减肥效果。在这项研究中,叶和他的团队试图找出介导这种寒冷引起的食欲增加的大脑回路。剑突核的神经元被寒冷激活(绿色)。其中的一个子集(红色)会促使动物在寒冷中吃得更多。资料来源:斯克里普斯研究所他们首先观察到的现象之一是,随着低温的到来(从华氏73度降到华氏39度),小鼠只有在延迟约六个小时后才会增加寻食量,这表明这种行为变化并不仅仅是冷感的直接结果。研究人员利用全脑清除和光片显微镜技术,比较了整个大脑神经元在寒冷和温暖条件下的活动。很快,他们就发现了一个关键的现象:虽然在寒冷条件下,整个大脑的大部分神经元活动都要低得多,但在一个名为丘脑的区域,部分神经元的激活程度却较高。最终,研究小组锁定了一个名为丘脑中线剑状核的特定神经元群,结果表明,在寒冷条件下,这些神经元的活动在小鼠从寒冷诱发的冬眠中醒来寻找食物之前会激增。当寒冷条件开始时可获得的食物较少时,剑突核的活动增加幅度更大--这表明这些神经元对寒冷引起的能量不足而不是寒冷本身做出了反应。当研究人员人为激活这些神经元时,小鼠增加了寻食活动,但没有增加其他活动。同样,当研究小组抑制这些神经元的活动时,小鼠的寻食行为也会减少。只有在寒冷条件下才会出现这些效应,这意味着低温提供了一个单独的信号,食欲的变化也必须有这个信号。在最后一组实验中,研究小组发现,这些剑突核神经元会投射到一个叫阿库仑核的脑区--该区域因其整合奖赏和厌恶信号以指导行为(包括进食行为)而久负盛名。叶说,这些结果最终可能具有临床意义,因为它们表明有可能阻断通常由寒冷引起的食欲增加,从而使相对简单的寒冷暴露疗法更有效地促进减肥。他说:"我们现在的主要目标之一是弄清楚如何将食欲增加与能量消耗增加分离开来。我们还想弄清楚,这种寒冷诱导的食欲增加机制是否是人体用于补偿额外能量消耗(例如运动后)的更广泛机制的一部分。"...PC版:https://www.cnbeta.com.tw/articles/soft/1383129.htm手机版:https://m.cnbeta.com.tw/view/1383129.htm

封面图片

科学家们发现了一种新的日常节奏 使人们了解到大脑活动是如何被微调的

科学家们发现了一种新的日常节奏使人们了解到大脑活动是如何被微调的该结果发表在《PLOS生物学》杂志上,可能有助于解释细微的突触变化如何改善人类的记忆。来自国家神经疾病和中风研究所(NINDS)的研究人员领导了这项研究,该研究所是国家卫生研究院的一部分。"抑制对大脑功能的各个方面都很重要。但二十多年来,大多数睡眠研究都集中在了解兴奋性突触上,"NINDS的高级调查员WeiLu博士说。"这是一项及时的研究,试图了解睡眠和清醒如何调节抑制性突触的可塑性"。Lu博士实验室的博士后WuKunwei调查了小鼠在睡眠和清醒时抑制性突触的情况。从海马体(一个参与记忆形成的大脑区域)的神经元进行的电记录显示了一种以前未知的活动模式。在清醒状态下,稳定的"强直"抑制活动增加,但快速的"阶段性"抑制活动减少。他们还发现,在清醒的小鼠神经元中,抑制性电反应的活动依赖性增强得多,这表明清醒,而不是睡眠,可能在更大程度上加强这些突触。抑制性神经元使用神经递质γ-氨基丁酸(GABA)来减少神经系统的活动。这些神经元在抑制性突触处将GABA分子释放到突触裂隙中,突触裂隙是神经元之间神经递质扩散的空间。这些分子与邻近的兴奋性神经元表面的GABAA受体结合,使其减少发射次数。进一步的实验表明,清醒时的突触变化是由α5-GABAA受体数量增加所驱动的。当受体在清醒小鼠体内被阻断时,活动依赖性的相位电反应的增强就会减弱。这表明,清醒时GABAA受体的积累可能是建立更强大、更有效的抑制性突触的关键,这是一个被称为突触可塑性的基本过程。"当你在白天学习新信息时,神经元受到来自大脑皮层和许多其他区域的兴奋性信号的轰击。"Lu博士说:"为了将这些信息转变为记忆,你首先需要调节和完善它--这就是抑制的作用。"先前的研究表明,海马体的突触变化可能是由抑制性中间神经元发出的信号驱动的,这种特殊类型的细胞在大脑中只占大约10-20%的神经元。在海马中有超过20种不同的中间神经元亚型,但最近的研究强调了两种类型,即被称为副白蛋白和体蛋白,它们关键性地参与了突触调节。为了确定哪种神经元负责他们所观察到的可塑性,Lu博士的团队使用了光遗传学,这是一种使用光来打开或关闭细胞的技术,并发现清醒状态导致更多的α5-GABAA受体和来自副白蛋白的更强连接,而不是体蛋白的神经元。人类和小鼠拥有类似的神经回路,是记忆储存和其他基本认知过程的基础。这种机制可能是抑制性输入精确控制神经元之间和整个大脑网络的信息起伏的一种方式。Lu博士说:"抑制实际上是相当强大的,因为它允许大脑以一种微调的方式执行,这基本上是所有认知的基础。"由于抑制对大脑功能的几乎每一个方面都至关重要,这项研究不仅有助于帮助科学家了解睡眠-觉醒周期,而且有助于了解植根于大脑节律异常的神经系统疾病,如癫痫。在未来,Lu博士的研究小组计划探索GABAA受体贩运到抑制性突触的分子基础。这项研究的部分资金来自于美国国家疾病预防控制中心的院内研究项目。...PC版:https://www.cnbeta.com.tw/articles/soft/1335699.htm手机版:https://m.cnbeta.com.tw/view/1335699.htm

封面图片

食欲控制:对水母和果蝇的研究揭示了饥饿调节的古老根源

食欲控制:对水母和果蝇的研究揭示了饥饿调节的古老根源数十年的研究表明,进食的动机,即饥饿感和饱腹感,是由激素和称为神经肽的小蛋白质控制的。它们在人类、小鼠和果蝇等广泛的生物体中都有发现。如此广泛的出现表明有一个共同的进化起源。为了探索这一现象,一个研究小组转向了水母和果蝇,从中发现了一些令人惊讶的结果。尽管水母在至少6亿年前与哺乳动物有共同的祖先,但它们的身体更简单;它们拥有被称为神经网的分散的神经系统,而不像哺乳动物有更具体的结构,如大脑或神经节。然而,水母拥有丰富的行为,包括精心设计的觅食策略、交配仪式、睡眠甚至学习。尽管它们在生命之树中具有重要地位,但这些迷人的生物仍然没有得到充分的研究,而且对它们如何控制食物的摄入几乎一无所知。水母Cladonemapacificum该小组由日本东北大学生命科学研究生院的HiromuTanimoto和VladimirosThoma领导,专注于Cladonema,一种具有分支触角的小型水母,可以在实验室中饲养。这些水母根据它们的饥饿程度来调节它们的进食量。"首先,为了了解喂养调节的基本机制,我们比较了饥饿和喂养水母的基因表达谱,"Tanimoto说。"摄食状态改变了许多基因的表达水平,包括一些编码神经肽的基因。通过合成和测试这些神经肽,我们发现有五种神经肽能减少饥饿水母的摄食。"研究人员随后仔细研究了这样一种神经肽--GLWamide--如何控制摄食。一项详细的行为分析显示,GLWamide抑制了触手的缩短,这是一个将捕获的猎物转移到口中的关键步骤。当研究人员对GLWamide进行标记时,他们发现它存在于位于触手基部的运动神经元中,而且摄食会增加GLWamide的水平。这导致了这样的结论:在克拉多纳马,GLW酰胺作为一种饱腹感信号--一种发送到神经系统的信号,表明身体已经吃够了食物。GLWamide(绿色)在Cladonema眼球(黑圈)周围的神经元中表达。细胞核以洋红色显示。资料来源:VladimirosThoma等人。然而,研究人员对探索这一发现的进化意义的追求并没有就此停止。相反,他们将目光投向了其他物种。果蝇的进食模式是由神经肽肌抑制肽(MIP)调节的。缺乏MIP的果蝇会吃更多的食物,最终体型变得肥胖。有趣的是,MIP和GLWamide在结构上有相似之处,这表明它们通过进化有关联。Thoma说:"由于GLWamide和MIP的功能在6亿年的分化中一直保持不变,这使我们思考是否有可能交换这两者。我们正是这样做的,首先给水母提供MIP,然后在没有MIP的苍蝇中表达GLWamide。"令人惊讶的是,MIP减少了Cladonema的摄食,就像GLWamide一样。此外,苍蝇体内的GLWamide消除了它们异常的过度进食,这表明GLWamide/MIP系统在水母和昆虫中的功能保存。Tanimoto指出,他们的研究强调了一个保守的饱腹感信号的深刻进化起源,以及利用比较方法的重要性。"我们希望我们的比较方法将激励人们在更广泛的进化背景下集中调查分子、神经元和电路在调节行为方面的作用"。...PC版:https://www.cnbeta.com.tw/articles/soft/1354305.htm手机版:https://m.cnbeta.com.tw/view/1354305.htm

封面图片

麻省理工学院揭示神经系统如何整合环境和状态以控制行为

麻省理工学院揭示神经系统如何整合环境和状态以控制行为麻省理工学院的一项新研究详细介绍了这一方法在一种更简单的动物身上的应用实例。它强调了一个潜在的基本原则,即神经系统如何整合多种因素来指导寻找食物的行为。所有的动物都面临着在制定行为时权衡不同的感官线索和内部状态的挑战,但科学家们对这一情况的实际发生知之甚少。为了深入了解,位于皮考尔学习和记忆研究所的研究小组转向了秀丽隐杆线虫,其明确的行为状态和只有302个细胞神经系统使这个复杂的问题至少是可操作的。他们通过一个案例研究发现,在一个名为AWA的关键嗅觉神经元中,许多状态和感觉信息的来源汇聚在一起,独立地节制着一个关键气味受体的表达。它们对该受体丰度的影响的整合,然后决定了AWA如何指导四处漫游寻找食物。"在这项研究中,我们根据动物所经历的持续状态和刺激,剖析了控制单个嗅觉神经元中单个嗅觉受体水平的机制,"资深作者、麻省理工学院脑与认知科学系李斯特兄弟副教授史蒂文·弗拉维尔说。"了解这种整合如何在一个细胞中发生,将为它如何在其他蠕虫神经元和其他动物中普遍发生指明方向。"麻省理工学院博士后IanMcLachlan领导了这项研究,该研究最近发表在eLife杂志上,该团队在开始时并不一定知道他们会发现什么。事实上,麦克拉克兰、弗拉维尔和他们的团队并没有专门去寻找神经元AWA或被称为STR-44的特定嗅觉化学感受器。相反,这些目标是从他们收集的无偏见的数据中出现的,当时他们研究了当蠕虫在三小时内不进食时与进食充足时相比哪些基因的表达变化最大。作为一个类别,许多化学感觉受体的基因显示出巨大的差异。事实证明,AWA是一个拥有大量此类上调基因的神经元,而两个受体STR-44和SRD-28在这些基因中显得尤为突出。仅这一结果就表明,内部状态(饥饿)影响着感觉神经元中受体的表达程度。麦克拉克兰和他的合著者随后能够表明,STR-44的表达也会根据压力化学品的存在、各种食物的气味以及蠕虫是否得到了吃食物的好处而独立变化。由共同第二作者TalyaKramer(一名研究生)领导的进一步测试揭示了哪些气味会触发STR-44,使研究人员随后能够证明AWA内STR-44表达的变化如何直接影响食物的寻求行为。还有更多的研究确定了这些不同的信号进入AWA的确切分子和电路手段,以及它们如何在细胞内作用以改变STR-44的表达。例如,在一个实验中,麦克拉克兰和弗拉维尔的团队表明,虽然喂养的和饥饿的蠕虫都会朝着受体最喜欢的气味蠕动,如果这些气味足够强烈的话,但只有饥饿的蠕虫(表达更多的受体)可以检测到更微弱的浓度。在另一个实验中,他们发现,尽管饥饿的蠕虫在到达食物源时将放慢速度进食,即使吃饱的蠕虫在旁边游弋,但他们可以通过人为地过度表达STR-44使吃饱的蠕虫表现得像饥饿的蠕虫。这样的实验证明STR-44的表达变化对寻找食物有直接影响。其他实验显示了多种因素对STR-44的拉动。例如,他们发现,当他们添加一种化学品使蠕虫受到压力时,即使在饥饿的蠕虫中也会降低STR-44的表达。后来他们发现,同样的应激物抑制了蠕虫向STR-44所反应的气味蠕动的冲动。因此,就像你可能会避免跟随你的鼻子去面包店,即使在饥饿的时候如果你看到你的前任在那里,会权衡压力来源和饥饿感。该研究显示,它们这样做是基于这些不同的线索和状态如何拉动AWA中STR-44的表达。其他几个实验研究了蠕虫的神经系统将感觉、饥饿和主动进食线索带到AWA的途径。技术助理MalvikaDua帮助揭示了其他食物感应神经元如何通过胰岛素信号和突触连接来影响STR-44在AWA的表达。关于蠕虫是否正在积极进食的线索来自肠道中的神经元,这些神经元使用一种叫做TORC2的分子营养传感器。这些,以及压力检测途径,都作用于FOXO,它是基因表达的调节器。换句话说,所有影响STR-44在AWA中表达的输入都是通过独立推拉同一个分子杠杆来实现的。像胰岛素和TORC2这样的途径不仅存在于其他蠕虫的感觉神经元中,而且也存在于包括人类在内的许多其他动物。此外,在更多的神经元中,感觉受体因禁食而上调,而不仅仅是AWA。这些重叠表明,他们在AWA中发现的整合信息的机制很可能在其他神经元中发挥作用,也许在其他动物中也是如此。这项研究的基本见解可能有助于为研究通过TORC2的肠道-大脑信号如何在人体内发挥作用提供信息。这正在成为优雅动物中肠道到大脑信号传递的主要途径,希望它最终将对人类健康具有转化意义。...PC版:https://www.cnbeta.com.tw/articles/soft/1333817.htm手机版:https://m.cnbeta.com.tw/view/1333817.htm

封面图片

针对果蝇的新研究揭示了雄性求偶行为的起源

针对果蝇的新研究揭示了雄性求偶行为的起源雄性果蝇通常对其他雄性果蝇表现出反社会行为,它们更喜欢与雌性果蝇为伴,雌性果蝇通过化学受体识别雄性果蝇。然而,康奈尔大学生物学家的最新研究表明,果蝇的视觉系统在它们的社会交往中发挥着重要作用。这一发现为人类各种社会行为的潜在根源,包括与躁狂症和自闭症等疾病相关的行为提供了新的见解。该论文最近发表在《当代生物学》(CurrentBiology)杂志上。许多动物物种利用视觉来调节它们的社会行为,但其基本机制在很大程度上是未知的。在果蝇中,视觉被认为明确用于运动检测和跟随,而不是调节社会行为--但研究人员发现事实可能并非如此。高级作者、神经生物学和行为学助理教授尼莱-亚皮奇(NilayYapici)说:"在我们的研究中,我们发现过度激活视觉系统会超越雄蝇发出的化学信号所产生的抑制作用,从而对另一只雄蝇说:'好吧,你知道,我是另一只雄蝇,别惹我'。令人惊讶的是,增加大脑中的视觉增益以某种方式推翻了化学感觉抑制,将雄性苍蝇吸引到其他雄性苍蝇身边。"研究人员发现,改变雄蝇大脑视觉反馈神经元中的GABARAP/GABAA受体信号传导会影响雄蝇的社交抑制。当视觉系统中的GABARAP被敲除后,雄蝇会出人意料地表现出对其他雄蝇更多的求爱行为。研究人员发现,控制果蝇视觉神经元的基因与人类大脑中的基因相似。人类大脑中GABA信号的减少与自闭症和精神分裂症等疾病的社会退缩特征有关。"我们的研究结果为研究这些蛋白质如何调控哺乳动物大脑中的社会行为以及它们对人类精神疾病的潜在贡献提供了一条很有希望的途径,"领衔作者马渊裕太博士(YutaMabuchi,Ph.D.'23)说。参考文献:《视觉反馈神经元通过GABA介导的抑制微调果蝇雄性求偶行为》,YutaMabuchi、XinyueCui、LilyXie、HaeinKim、TianxingJiang和NilayYapici,2023年9月5日,《当代生物学》(CurrentBiology)。DOI:10.1016/j.cub.2023.08.034编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1403469.htm手机版:https://m.cnbeta.com.tw/view/1403469.htm

封面图片

新研究揭示了纳米塑料如何影响新陈代谢

新研究揭示了纳米塑料如何影响新陈代谢废旧塑料的猖獗排放正使全球的生态系统处于危险之中。一个主要的担忧是小塑料颗粒的扩散,通常被称为微塑料和纳米塑料。这些微小的颗粒已经在饮用水、食物、甚至空气的来源中被发现。纳米塑料可以通过食物和水被人类和动物吸收。人们担心微塑料会在体内长期积累。由于它们对人类健康的全部影响仍然未知,因此成为科学研究的对象,如莱比锡大学目前的研究。聚对苯二甲酸乙二醇酯,又称PET,是一种广泛使用的塑料。它被用来制造塑料袋以及实用的食品和饮料容器。到目前为止,人们对PET纳米塑料的破坏性影响知之甚少。在最近发表的一个研究项目中,莱比锡大学的科学家重点研究了PET纳米塑料对斑马鱼胚胎的影响。他们发现,这些微小的塑料颗粒在模型动物的几个器官中积累,包括肝脏、肠道、肾脏和大脑。此外,PET纳米塑料引起了胚胎的行为异常,因为观察到运动量减少。"我们的研究首次揭示了PET纳米塑料诱发的毒性途径以及完整的斑马鱼幼体的潜在破坏机制。我们发现,肝脏功能明显受损,并出现了氧化应激。"医学系医学物理学和生物物理学研究所的科学家AliaMatysik博士说:"PET纳米塑料还影响了生物体的细胞膜和能量学。"PET的积累改变了生物体的生物化学特性高分辨率魔角旋转(HRMAS)是一种将核磁共振(NMR)应用于固体和软物质的非侵入性分析技术,被用来研究斑马鱼的胚胎。这种科学方法的优点是能够从外部观察物质,而不必,例如,损坏组织或将仪器插入体内。这项研究将斑马鱼细胞和组织的代谢研究与细胞检测和行为测试相结合。"我们使用最先进的分析性核磁共振方法,对受PET纳米塑料影响的代谢途径进行了全面的系统级了解。我们能够观察到PET的积累如何改变生物体的生物化学特性,"Matysik博士说。"这项研究发现强调了PET纳米塑料的不利影响,在斑马鱼胚胎中已经观察到了这种影响,也可能在哺乳动物和人类中发挥了作用。虽然我们对这个问题还没有明确的答案,但现在可以肯定的是,PET纳米塑料正在破坏我们的生态系统。在任何情况下,都应该防止塑料进入环境。"来自分析化学研究所的JörgMatysik教授说:"据推测,避免这种形式的废物将是近期的巨大挑战。"他参与了他妻子的研究。莱比锡大学的科学家们计划继续进行这方面的研究,同时调查纳米塑料对大脑功能的影响。"我们已经看到PET纳米塑料在大脑中的积累。我们现在想弄清楚这是否对大脑功能和神经退行性疾病有影响,"AliaMatysik博士说。...PC版:https://www.cnbeta.com.tw/articles/soft/1357511.htm手机版:https://m.cnbeta.com.tw/view/1357511.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人