中国曾排放一种破坏臭氧层的化学物质,可能导致其修复推迟十年。但根据一份联合国支持的科学报告,中国已基本消除该物质的违规排放。臭氧

None

相关推荐

封面图片

#一周热门科学报告称中国已基本消除违规排放臭氧“杀手”bit.ly/3IBKqYg

封面图片

索尼导体工厂误报化学物质物质排放量

索尼导体工厂误报化学物质物质排放量索尼集团旗下半导体制造商索尼半导体制造公司8日宣布,该公司出现有害化学物质排放至工厂外部未进行通报的情况。发生漏报情况的是该公司位于熊本县菊阳町的相机图像传感器工厂,排放物质为氟化氢,该物质常用于半导体的加工和清洗。在2021和2022财年,该工厂曾报“未经无害化处理的废弃物向工厂外排放量”为零,但实际上存在排放情况。目前该工厂正在进行氟化氢排放量调查,并称氟化氢已得到妥善处理。索尼半导体制造公司的其他工厂也在自查是否存在漏报化学品排放的情况。——、、

封面图片

科学报告:臭氧层有望在20年后逐步恢复

科学报告:臭氧层有望在20年后逐步恢复(早报讯)根据联合国支持的一项评估报告,地球上的臭氧层有望在20年后逐步恢复,因为消耗臭氧层的破坏性化学产品正被淘汰。美国有线电视新闻网(CNN)报道,这份于星期一(1月9日)发表的评估报告指出,臭氧层的空洞获得修复,主要归功于氯氟烃(Chlorofluorocarbons,简称CFCs)的使用减少了99%,许多危害臭氧层的化学产品,都在世界各地被淘汰。报告指出,若全球政策保持不变,预计到了2040年,世界大部分地区的臭氧层都将恢复到1980年的水平。但北极地区的臭氧层需要到2045年才能恢复,而南极地区则要到2066年。20世纪时,人类活动对臭氧层造成严重破坏。国际社会于1987年达成《关于消耗臭氧层物质的蒙特利尔议定书》,逐渐禁止使用氯氟烃等破坏臭氧层的物质。氯氟烃最初被人们用来做冰箱制冷剂,但由于它会对臭氧层起到分解作用,从1996年1月1日起,氯氟碳化合物正式禁止生产。臭氧层是指距地表15至50公里处,臭氧分子相对富集的大气平流层。它能吸收99%以上对人类有害的太阳紫外线,保护地球上的生命免遭短波紫外线的伤害,因此被誉为地球上生物生存繁衍的保护伞。发布:2023年1月10日5:05PM

封面图片

剥开未知化学物质的面纱:科学家们正在寻找另外99%的化学物质

剥开未知化学物质的面纱:科学家们正在寻找另外99%的化学物质这项工作是一项名为"m/q"或"moverq"的计划的一部分--"moverq"是质量除以电荷的缩写,表示科学家在质谱世界中测量化学性质的方法之一。m/q计划负责人托马斯-梅兹说:"现在,我们可以从土壤中提取样本,根据土壤类型的不同,一茶匙的样本中可能含有数千种化合物。我们不知道其中大多数化合物的化学结构。我们根本不知道里面有什么"。科学家通常依靠包含数千种分子信息的参考文献库来识别物质。研究人员将土壤、人体或其他地方的样本进行分类,然后将他们通过实验测得的结果与资料库中的结果进行比较。虽然这很有帮助,但却限制了科学家们只能对以前见过的分子进行结构鉴定--例如,通过分析从化学品供应商处购买的标准化合物。亚当-霍勒巴赫(AdamHollerbach)与西北太平洋国家实验室制造的SLIM设备。资料来源:AndreaStarr太平洋西北国家实验室m/q的科学家们正在瞄准尚未被识别的另外99%。科学家亚当-霍勒巴赫(AdamHollerbach)领导的研究小组取得了最新进展,他们将两台高分辨率仪器合二为一,对分子进行了前所未有的详细测定。相关成果于6月12日在线发表在《分析化学》(AnalyticalChemistry)杂志上。现在,科学家们可以在一次实验中对化合物进行多项重要测量,比以前更快、更方便、更准确地获得重要信息。霍勒巴赫的技术适用于离子--带有正电荷或负电荷的分子。这使得它们更容易控制,并有可能使用质谱法进行检测。与研究离子的人一样,离子也有许多不同的特征。对于人来说,体重、发色、大小、形状、眼睛颜色以及许多其他特征都能帮助我们分辨出谁是谁。离子的识别特征包括质量、形状、大小、电荷和化学成分。这些不仅是识别特征,也是相关分子行为的指南--例如,它们治疗疾病或吸附污染物的潜力。这种理解应该有助于PNNL数十名科学家的工作,他们专注于理解微生物对气候的影响。微生物在将碳等元素转化为对地球非常重要的其他形式的过程中发挥着关键作用。它们对地球变暖或变冷的影响是巨大的。但科学家们还有很多东西要学。"一克土壤中可能有数百万种微生物,我们不知道它们中的大多数是谁,也不知道它们在做什么。我们还有很多发现要做,"梅兹说。"从挑战科学的角度来看,这要么是最坏的情况,要么是我们最大的机遇之一,这取决于你如何看待它。"m/q科学家们正在抓住这个机会。他们不是在传统质谱测量所能识别的相对较少的化合物范围内提出问题,而是试图跨越目前的限制,创造一种全新的方法来识别当今未知的物质。这有点像新望远镜投入使用后,能看到几颗截然不同的恒星,而以前只能看到一个模糊的天体大杂烩。这项工作既是实验性的,即在实验室中对分子进行测试,也是在计算机上进行的,科学家们在计算机上对他们所看到的东西进行建模,并预测他们可能会看到的东西。在《分析化学》论文中描述的实验中,霍勒巴赫及其同事对肽和脂质进行了灵敏的测量。实验结合了两种名称相似但提供离子不同细节的仪器。这两种仪器都用于质谱分析,而质谱分析的历史与PNNL科学家的发现交织在一起。第一种仪器是质谱仪,用于测量离子的质量、电荷以及离子的分解方式。在这项研究中,研究小组使用了Thermo-FisherScientific公司开发的Orbitrap质谱仪。这种仪器能很好地分拣不同质量的分子,但两个相同质量的分子却很难分离。想想两个人,一个又高又瘦,另一个又矮又胖,每个人都重达180磅。单从体重秤上看,他们是不可能分开的。SLIM方法:离子迁移率光谱仪带来厚重的结果第二台仪器被称为SLIM:无损离子操作结构。由PNNL科学家RichardD.Smith及其同事创建的SLIM是一种离子迁移率光谱仪,可测量离子的大小和电荷。SLIM只有笔记本电脑大小,厚度仅为四分之一英寸,是一个分子活动的温室。数十条蜿蜒曲折的长路把这个小装置变成了一个42英尺长的分子赛道,电场严格控制的离子在椭圆形障碍赛道上飞驰。这些"障碍"是其他已知的分子,如氦或氮分子。当被研究的离子在SLIM设备中飞驰时,它们会绕过或穿过其他分子,翻滚和转弯,就像橄榄球后卫在对方阻挡者面前跑来跑去一样。离子迁移谱"这一术语真正捕捉到了这一动作。通过记录离子完成整个过程所需的时间--它们是如何巧妙地绕过阻挡的离子--科学家们可以借此了解到有关离子形状和大小的各种信息。这些信息是标准质谱仪无法提供的,它们与离子的质量、电荷和碎片模式等数据结合在一起。这些数据可以得出离子的碰撞截面、分子式和碎裂模式,这些属性对于了解分子结构至关重要。"两个不同的分子可能具有相同的原子数、相同的质量和电荷,但它们的结构和活性可能截然不同。这就是SLIM的作用所在。"只要一个微小的变化,就可能意味着一个分子是疾病的征兆,而另一个则不是。霍勒巴赫实验的关键在于让两种不同的仪器完美配合。虽然标准质谱仪和离子迁移谱仪都分析离子,但它们的工作时间尺度不同。离子通过SLIM到达Orbitrap的速度比处理速度更快。因此,霍勒巴赫借鉴了一种古老的技术,采用了"双门控离子注入"技术。他增加了一些门来控制离子进入系统和到达轨道阱的速度,选择将一些离子从SLIM送出,使其消失,从而使离子流保持在一个可控的速度。霍勒巴赫说:"实际上,我们提出的问题非常简单。这是什么,有多少?但我们使用的技术却很复杂。"其他m/q科学家正在研究识别或利用未知分子的其他方法。有些科学家正在创造方法,利用霍勒巴赫实验的数据自动预测离子的结构,这样制药商和其他科学家就能清楚地知道他们正在研究的是什么。还有一些科学家正在研究芬太尼等化合物的数百万种可能形式,从某天可能出现在大街上的化合物中筛选出不可能出现的化合物。然后,他们预测这些化合物在质谱仪中的表现--如果它们真的出现在质谱仪中,就有办法识别它们。...PC版:https://www.cnbeta.com.tw/articles/soft/1379983.htm手机版:https://m.cnbeta.com.tw/view/1379983.htm

封面图片

研究:厕纸为永久化学物质主要来源

研究:厕纸为永久化学物质主要来源(早报讯)所谓的永久化学物质(foreverchemical)似乎无处不在。研究发现,这种潜在的有害物质意想不到的一大来源是如厕用纸。本周发表在期刊《环境科学与技术通讯》上的研究报告指出,卫生纸中含有全氟或多氟化学物质(Per-andPolyfluorinatedSubstances,简称PFAS)。由佛罗里达州大学研究人员领导的一个学术团队得出结论,指厕纸可能是进入废水处理系统的PFAS的来源。这些物质可能会经由污水渗入土壤。研究人员认为,减少废水中的PFAS“至关重要”。彭博社引述研究报告的主要撰写人、佛罗里达州大学环境工程博士生杰克·汤普森(JakeThompson)说:“PFAS在许多消费品中无处不在……我不是希望每个人停用卫生纸……我们必须考虑如何限制它在各种产品中的使用。”在这项研究中,研究人员分析了2021年11月至2022年8月期间来自非洲、北美洲、南美洲和中美洲以及西欧这四个地区的卷筒厕纸样本,以及来自美国废水处理厂的污水样本。他们在厕纸样本中检测到六种PFAS,最常见的物质是6:2diPAP。法新社报道,研究人员将他们的结果与其他研究的数据结合起来,这些研究包括对几个国家污水中PFAS水平和人均卫生纸使用量的测量。他们发现,美国和加拿大的diPAP中,4%来自厕纸,在瑞典和法国的数据则分别为35%和89%。化妆品、防水衣物和不沾炊具都有PFAS这种永久化学物质。这些物质与多种类型的癌症、心血管疾病、生育问题及孩童发育障碍有关。研究指出:“废水和淤泥常重新用于灌溉或相关土地应用;这两种应用途径使得人类和环境暴露于PFAS的风险之中。”一些制造商将木材转化成纸浆时会添加PFAS,卫生纸产品可能会受少量的PFAS污染。研究指出,再生的厕纸也可能由含有PFAS材料的纤维制成。在上个世纪四十年代合成的PFAS,因为在环境和人体中具有极高持久性,故称“永久化学物质”。

封面图片

化学家开发出去除水中"永久化学物质"的可持续方法

化学家开发出去除水中"永久化学物质"的可持续方法含二茂铁单元的金属聚合物用于可逆吸收全氟化合物的图示。资料来源:MarkusGallei然而,这种广泛的使用也引起了人们的担忧。由于其性质稳定且缺乏自然降解途径,这些耐久性化学品会在我们的环境中持续累积,给人类健康和周围环境带来严重问题。如今,在全球范围内,从水、空气、土壤到植物和动物,都能发现PFAS的踪迹。它们不可避免地也会进入人体。这些化学物质对健康的危害到底有多大,目前还不清楚。初步的实验室动物研究表明,PFAS可能会损害生殖健康。显而易见的是,这些合成化合物不属于自然环境,当然也不属于生物体。因此,设法降低环境中的PFAS污染水平是合理的。但是,PFAS的修复工作既复杂又具有挑战性,而且所使用的工艺本身也会对环境和气候造成不利影响。在清除之前,必须先检测出PFAS。由于只需要少量的PFAS就能产生很大的影响(例如食品包装中的超薄涂层),因此检测工作并不容易。传统上,PFAS是通过使用特殊膜或成本较低的活性炭吸附剂进行过滤而从水中去除的。然而,要从这些过滤系统中回收PFAS并将其永久销毁,要么需要使用苛刻的化学条件,要么需要进行焚烧。至少到目前为止还是如此。由萨尔州大学高分子化学教授MarkusGallei、伊利诺伊大学香槟分校教授XiaoSu以及他们的博士生FrankHartmann(萨尔州)和PaolaBaldaguez(伊利诺伊州)领导的研究小组开发出了一种新的电化学方法,可以从水中去除全氟辛烷磺酸化学物质,然后再有效地释放出来进行销毁。这种新的PFAS修复平台可以收集、识别和销毁这些含氟污染物,而无需焚烧过滤器。在研究小组开发的方法中,起核心作用的是被称为茂金属的含金属聚合物。1951年,随着含铁分子二茂铁的发现,茂金属首次出现在人们的视野中。此后,又有许多其他茂金属被开发出来。弗兰克-哈特曼(FrankHartmann)、马库斯-加利(MarkusGallei)和他们的国际团队发现,二茂铁功能化电极或弗兰克-哈特曼合成的钴功能化电极(甚至更有效)能够去除水中微量的全氟辛烷磺酸分子。但真正的关键在于,如果在二茂铁或二茂钴金属聚合物上施加电压,它们就能'切换'电状态,释放之前捕获的全氟辛烷磺酸分子。弗兰克-哈特曼(FrankHartmann)说:"钴在这方面的能力明显强于铁。我们已经找到了一种方法,可以有效地将PFAS从水中去除,然后再释放出来,从而有效地使电极再生,以便继续使用。""与活性炭过滤器不同,活性炭一旦被全氟辛烷磺酸分子饱和,我就必须将其销毁,但如果我愿意,我可以无数次地更换茂金属,"马库斯-加莱总结研究工作的意义时说。在奠定了技术基础之后,弗兰克-哈特曼、马库斯-加莱和他们在伊利诺伊大学的同事们现在正在寻求更大规模的开发,以促进从我们的河流和海洋中清除这些高持久性污染物。...PC版:https://www.cnbeta.com.tw/articles/soft/1375833.htm手机版:https://m.cnbeta.com.tw/view/1375833.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人