美国参议院推动人工智能安全法案 旨在防止AI模型出现安全漏洞
美国参议院推动人工智能安全法案旨在防止AI模型出现安全漏洞该中心将领导研究法案中所说的"反人工智能",即学习如何操纵人工智能系统的技术。该中心还将制定预防反人工智能措施的指南。该法案还将要求国家标准与技术研究院(NIST)和网络安全与基础设施安全局建立一个人工智能漏洞数据库,包括"近乎得手的漏洞"。华纳和蒂利斯提出的法案重点关注对抗人工智能的技术,并将其分为数据中毒、规避攻击、基于隐私的攻击和滥用攻击。数据中毒指的是在人工智能模型刮取的数据中插入代码,破坏模型输出的方法。它是防止人工智能图像生成器在互联网上复制艺术作品的一种流行方法。规避攻击会改变人工智能模型所研究的数据,以至于模型变得混乱。人工智能安全是拜登政府人工智能行政命令的关键项目之一,该命令指示美国国家标准与技术研究院(NIST)制定"红队"指导方针,并要求人工智能开发人员提交安全报告。所谓"红队"(redteaming),是指开发人员故意让人工智能模型对不应该出现的提示做出反应。理想情况下,人工智能模型的开发者会对平台进行安全测试,并在向公众发布之前对其进行广泛的红队测试。一些公司如微软已经创建了一些工具,帮助人工智能项目更容易地添加安全防护措施。《人工智能安全法案》在提交给更大范围的参议院审议之前,必须经过一个委员会的审议。...PC版:https://www.cnbeta.com.tw/articles/soft/1429345.htm手机版:https://m.cnbeta.com.tw/view/1429345.htm