Datawhale 的《推荐系统入门教程》
Datawhale的《》本教程主要是针对具有机器学习基础并想找推荐算法岗位的同学。教程内容由推荐系统概述、推荐算法基础、推荐系统实战和推荐系统面经四个部分组成。本教程对于入门推荐算法的同学来说,可以从推荐算法的基础到实战再到面试,形成一个闭环。每个部分的详细内容如下:推荐系统概述。这部分内容会从推荐系统的意义及应用,到架构及相关的技术栈做一个概述性的总结,目的是为了让初学者更加了解推荐系统。推荐系统算法基础。这部分会介绍推荐系统中对于算法工程师来说基础并且重要的相关算法,如经典的召回、排序算法。随着项目的迭代,后续还会不断的总结其他的关键算法和技术,如重排、冷启动等。推荐系统实战。这部分内容包含推荐系统竞赛实战和新闻推荐系统的实践。其中推荐系统竞赛实战是结合阿里天池上的新闻推荐入门赛做的相关内容。新闻推荐系统实践是实现一个具有前后端交互及整个推荐链路的项目,该项目是一个新闻推荐系统的demo没有实际的商业化价值。推荐系统算法面经。这里会将推荐算法工程师面试过程中常考的一些基础知识、热门技术等面经进行整理,方便同学在有了一定推荐算法基础之后去面试,因为对于初学者来说只有在公司实习学到的东西才是最有价值的。