美研究员造出类似活细胞的人造细胞

美研究员造出类似活细胞的人造细胞美国研究人员首次通过操纵脱氧核糖核酸(DNA)和蛋白质,制造出外观和行为与人体细胞相似的细胞。这一成果对再生医学、药物输送系统和诊断工具等方面的研究具有重要意义。新华社报道,这项于上星期二(4月23日)刊登在英国《自然·化学》杂志上的研究报告指出,蛋白质对于形成细胞的框架即细胞骨架至关重要,没有它细胞就无法运作。细胞骨架使细胞在形状和对环境的反应方面都具有灵活性。美国北卡罗来纳大学查珀尔希尔校区研究人员设计使用了一种新的可编程肽-DNA技术,引导蛋白质的组成成分肽合成具有功能性细胞骨架(Cytoskeleton)的细胞,它们可以改变形状并对周围环境作出反应。据介绍,DNA通常不会出现在细胞骨架中,研究人员通过对DNA序列重新编程,使其成为一种将肽结合在一起的架构材料。能以这种方式对DNA编程,意味着可以制造出具有特定功能的细胞,甚至可以微调细胞对外部压力的反应。通常,人体活细胞比该研究中合成的细胞更复杂,但也更难以预测,更容易受环境影响,而这种合成细胞即使在50摄氏度的温度下也能保持稳定。研究员介绍称,这种合成细胞材料是为执行特定功能而设计的,可根据不同的应用场景,通过添加不同的肽或DNA设计来定制。这些新材料可以与其他合成细胞技术相结合,应用于生物技术和医学等领域。2024年4月29日12:07PM

相关推荐

封面图片

由DNA和肽组成的自组装合成细胞超越了自然能力

由DNA和肽组成的自组装合成细胞超越了自然能力 新的合成细胞利用DNA和肽构建细胞骨架(用淡紫色标出)图/北卡罗来纳大学教堂山分校细胞的结构和稳定性来自细胞骨架,这是一个由蛋白质组成的交联框架,用于包裹和保护其他成分。根据细胞类型的不同,这种细胞骨架可以有不同程度的灵活性,并以不同的方式对环境做出反应,从而赋予细胞特异功能。在这项新研究中,北卡罗来纳大学教堂山分校的科学家们开发出了由DNA、肽和其他遗传物质组成的合成自组装细胞骨架。该研究的第一作者罗尼特-弗里曼说:"DNA通常不会出现在细胞骨架中。我们对DNA序列进行了重新编程,使其成为一种建筑材料,将多肽结合在一起。一旦将这种编程材料放入水滴中,结构就会成形。"研究人员能够对DNA进行编程,使其以不同的方式组装,从而赋予合成细胞不同的功能。它们也没有被锁定在一个目的上--改变溶液的温度可以触发不同的配置。研究小组说,将不同的肽或DNA序列组合在一起,就能制造出更大规模的可编程组织。虽然它们没有活细胞那么复杂,但这些合成细胞更容易操作,而且能在天然细胞无法处理的条件下工作。弗里曼说:"合成细胞即使在122°F(50°C)的温度下也能保持稳定,这为在通常不适合人类生存的环境中制造具有超常能力的细胞提供了可能。"研究小组表示,当这些可编程细胞与其他合成细胞技术相结合时,可用于再生医学、药物输送系统和诊断工具等应用。这项研究发表在《自然-化学》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1428536.htm手机版:https://m.cnbeta.com.tw/view/1428536.htm

封面图片

抗拒治疗:癌细胞为了生存会收缩或超大型化

抗拒治疗:癌细胞为了生存会收缩或超大型化研究人员认为,较小的细胞可能更容易受到DNA破坏剂的伤害,如与靶向药物相结合的化疗,而较大的癌细胞可能对免疫疗法反应更好。该研究最近发表在《科学进展》杂志上。它将创新的高功率图像分析与DNA和蛋白质的检查相结合,研究了数百万个皮肤癌细胞的大小控制。皮肤癌黑色素瘤由两种不同的基因突变驱动--60%的病例由BRAF基因突变引起,而20%至30%的病例由NRAS突变引起。研究人员着手调查携带这两种突变的皮肤癌细胞在大小和形状上的差异,方法是使用数学算法分析关于DNA和蛋白质的海量数据。主要的差异是细胞大小:BRAF突变的癌细胞非常小,而NRAS突变的癌细胞则大得多。耐药的NRAS细胞甚至更大。较小的细胞似乎能够容忍更高水平的DNA损伤,因为它们非常集中于修复DNA的蛋白质--如PARP、BRCA1或ATM1蛋白质。ICR的研究人员认为,这可能使它们更容易受到PARP抑制剂等药物的影响--这些药物阻断了负责修复DNA损伤的蛋白质--尤其是在与化疗等DNA损伤剂结合使用时。相比之下,较大的NRAS突变型癌细胞含有对其DNA的损害,而不是修复它,积累突变,并扩大。这些较大的细胞不那么依赖DNA修复机制,因此对它们使用化疗和PARP抑制剂可能不那么敏感。科学家们认为更大的细胞可能对免疫疗法有更大的反应--因为它们更多的突变可能使它们看起来对身体更陌生。他们已经在通过进一步研究探索这一理论。研究人员认为BRAF和NRAS突变可能通过调节一种被称为CCND1的蛋白质水平--它参与细胞分裂、生长和维持细胞骨架--以及它与其他蛋白质的相互作用来驱动细胞大小的差异。虽然这项研究的重点是皮肤癌细胞,但研究人员怀疑这种大小转变的能力及其对治疗反应的影响在多种癌症类型中是常见的。他们已经在乳腺癌中发现了类似的机制,现在正在调查这些发现是否可以适用于头颈部癌症。这一发现为了解癌细胞的大小如何影响整个疾病提供了新的视角,因为只需分析细胞大小就能更好地预测癌症患者对不同治疗的反应。现有的药物甚至可以用来在免疫疗法或放疗等治疗之前迫使癌细胞达到理想的大小,这可以提高治疗效果。研究负责人、伦敦癌症研究所的癌症形态动力学教授克里斯-巴卡尔说。"我们认为癌症是无法控制和不可预测的,但我们利用图像分析和蛋白质组学首次表明,某些基因和蛋白质的变化导致了癌细胞大小的可控变化。癌细胞可以收缩或增长,以增强其修复或包含DNA损伤的能力,而这反过来又可以使它们对某些治疗产生抗性。他继续说:"我们认为我们的研究具有真正的诊断潜力。通过观察细胞的大小,病理学家可以预测一种药物是否会起作用,或者细胞是否会产生抗性。在未来,甚至有可能使用人工智能来帮助指导病理学家,通过对细胞的大小进行快速评估,因此最有可能发挥作用的治疗方法。我们还希望我们的发现将导致新的治疗策略--例如创造出针对调节细胞大小的蛋白质的药物"。伦敦癌症研究所的首席执行官KristianHelin教授说。"这项耐人寻味的基础研究提供了皮肤癌细胞的基因改变与细胞大小之间的关联。它开辟了使用基因改变和细胞大小作为生物标志物的潜力,说明皮肤癌对治疗的反应。特别令人兴奋的是,细胞大小也可以成为其他癌症(如乳腺癌或头颈部癌症)如何应对治疗的重要生物标志物"。...PC版:https://www.cnbeta.com.tw/articles/soft/1349143.htm手机版:https://m.cnbeta.com.tw/view/1349143.htm

封面图片

研究人员发现植物如何重新规划其细胞以对抗入侵者

研究人员发现植物如何重新规划其细胞以对抗入侵者在战争时期,工厂可以重新调整以支持战斗的需要。装配线改变路线,从制造汽车零件到制造机枪,或从生产洗衣机到生产飞机引擎。现在杜克大学研究人员发现,植物也可以从和平时期转向战时生产。农作物和其他植物经常受到微生物的攻击,包括细菌、病毒和其他病原体。当植物感觉到微生物入侵时,它的细胞内的蛋白质化学汤会发生深刻的变化。在最近发表在《细胞》杂志上的一项新研究中,研究人员揭示了植物细胞中的关键成分,这些成分对其蛋白质制造机器进行了重新编程以对抗疾病。每年,大约15%的作物产量因细菌和真菌疾病而损失,使全球经济损失约2200亿美元。植物依靠其免疫系统来帮助它们进行反击。与动物不同,植物没有专门的免疫细胞,可以通过血液到达感染的地点。相反,植物中的每一个细胞都必须能够站立和战斗来保护自己,迅速转变为战斗模式。当植物受到攻击时,它们将优先事项从生长转向防御。这意味着细胞开始合成新的蛋白质并抑制其他蛋白质的产生。细胞中数以万计的蛋白质做了许多工作:催化反应,识别外来物质,作为化学信使,并将材料移入和移出。为了制造一种特定的蛋白质,细胞核内的DNA中遗传指令被转录成一种叫做mRNA的信使分子。这条mRNA链然后进入细胞质,在那里被称为核糖体的结构"读取"信息并将其翻译成蛋白质。在一项研究中,研究人员发现当植物被感染时,某些mRNA分子会比其他分子更快地翻译成蛋白质。研究人员发现,这些mRNA分子的共同点是RNA链前端的一个区域,其遗传密码中的字母反复出现,其中核苷酸碱基腺嘌呤和鸟嘌呤不断重复。研究人员证明,当植物检测到病原体攻击时,为核糖体登陆和读取mRNA提供信号的分子路标被移除,这使细胞无法制造其典型的"和平时期"蛋白质。相反,核糖体绕过通常的翻译起点,使用RNA分子内反复出现的As和Gs区域进行对接,并从那里开始阅读,基本上走了一条捷径,通过了解植物如何取得这种平衡,研究人员希望找到新的方法来设计抗病作物,而不影响产量。PC版:https://www.cnbeta.com/articles/soft/1310915.htm手机版:https://m.cnbeta.com/view/1310915.htm

封面图片

新研究表明细胞拥有某种未知的基于离子梯度的通信系统

新研究表明细胞拥有某种未知的基于离子梯度的通信系统细胞不断在动态环境中航行,面临着不断变化的条件和挑战。但细胞如何迅速适应这些环境波动呢?新研究揭示,跨细胞膜的离子梯度创建了一个独立于DNA的网络,可帮助细胞迅速做出决策。发表在《iScience》上的莫菲特癌症中心的一项新研究挑战了我们对细胞功能的理解,从而回答了这个问题。一个研究小组提出,细胞拥有一种以前未知的信息处理系统,它能让细胞独立于基因迅速做出决定。几十年来,科学家一直将DNA视为细胞信息的唯一来源。DNA蓝图指示细胞如何构建蛋白质和执行基本功能。然而,由迪佩什-尼劳拉(DipeshNiraula)博士和罗伯特-加滕比(RobertGatenby)医学博士领导的莫菲特新研究发现了一种与DNA同时运行的非基因组信息系统,它能使细胞从环境中收集信息并对变化做出快速反应。离子梯度的作用研究的重点是细胞膜上离子梯度的作用。这些梯度由专门的泵维持,需要消耗大量能量才能产生不同的跨膜电势。研究人员提出,这些梯度代表了一个巨大的信息库,使细胞能够持续监测其环境。当细胞膜上的某个点接收到信息时,它会与离子特异性通道中专门的门相互作用,然后打开这些门,让这些离子沿着预先存在的梯度流动,形成一条通信通道。离子流触发了细胞膜附近的一连串事件,使细胞能够对信息进行分析并迅速做出反应。当离子流较大或持续时间较长时,它们会导致细胞骨架的微管和微丝的自组装。通常,细胞骨架网络为细胞提供机械支持,并负责细胞的形状和运动。然而,莫菲特公司的研究人员注意到,细胞骨架中的蛋白质也是极好的离子导体。这使得细胞骨架成为一个高度动态的细胞内布线网络,将基于离子的信息从膜传递到细胞内的细胞器,包括线粒体、内质网和细胞核。研究人员认为,这一系统可以对特定信号做出快速的局部反应,也可以对较大的环境变化做出协调的区域或全球反应。研究的启示和影响机器学习系应用研究科学家尼劳拉说:"我们的研究揭示了细胞利用跨膜离子梯度作为通信手段的能力,使它们能够迅速感知周围环境的变化并做出反应。这种错综复杂的网络使细胞能够迅速做出明智的决定,这对细胞的生存和功能至关重要。"研究人员认为,这种非基因组信息系统对于形成和维持正常的多细胞组织至关重要,并认为神经元中描述详尽的离子通量就是这种广泛信息网络的一个特殊例子。这些动态变化的中断也可能是癌症发展的一个关键组成部分。他们证明了自己的模型与多项实验观察结果一致,并强调了由其模型产生的几项可检验的预测,希望能为未来的实验验证其理论和揭示细胞决策的复杂性铺平道路。"这项研究挑战了生物学中隐含的假设,即基因组是信息的唯一来源,而细胞核则是一种中央处理器。"莫菲特进化治疗卓越中心联合主任加滕比说:"我们展示了一个全新的信息网络,它允许快速适应和进行细胞生存所需的复杂交流,并很可能深度参与了细胞间的信号传递,从而使多细胞生物体得以正常运作。"编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1428812.htm手机版:https://m.cnbeta.com.tw/view/1428812.htm

封面图片

研究发现RNA结合蛋白是导致严重哮喘的关键因素

研究发现RNA结合蛋白是导致严重哮喘的关键因素人们对导致哮喘的炎症过程非常了解,但却不了解导致哮喘的基因。现在,伦敦国王学院研究人员领导的一项新研究首次揭示了RNA及其调控的蛋白质所发挥的重要作用。研究人员从哮喘患者和非哮喘患者的细胞中获得了RNA遗传数据。RNA可以传输和解释DNA中的遗传密码。信使RNA(mRNA)将蛋白质信息从细胞核中的DNA带到细胞质或细胞内部。RNA结合蛋白选择性地与mRNA结合,将它们定位在亚细胞区室中,并调节蛋白质的合成。他们发现,两种RNA结合蛋白ZFP36L1和ZFP36L2在哮喘患者中明显失调。当这两种蛋白在重症哮喘患者的支气管上皮细胞中得到恢复时,研究人员观察到控制严重炎症的基因的表达发生了变化。他们的结论是,ZFP36L1和ZPF36L2驱动了哮喘患者上皮细胞基因表达的变化。研究人员发现,在暴露于家尘螨以诱发哮喘样症状的小鼠中,这些蛋白质在小鼠的气道细胞中错位定位。与定位到亚细胞区的蛋白质不同,定位错误的蛋白质无法正常发挥作用。根据这一发现,研究人员认为,定位错误的蛋白质通过在细胞中发挥不同的功能,导致了哮喘所特有的炎症。虽然目前的研究表明,mRNA表达的调控是哮喘的一个基本过程,但还需要进一步的研究来证实这些RNA蛋白在人体中的作用,并更好地了解它们对呼吸系统健康的影响。该研究发表在《细胞与发育生物学前沿》(FrontiersinCellandDevelopmentalBiology)杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1392685.htm手机版:https://m.cnbeta.com.tw/view/1392685.htm

封面图片

“再见”基因:果蝇在细胞凋亡过程中使用的蛋白质与哺乳动物类似

“再见”基因:果蝇在细胞凋亡过程中使用的蛋白质与哺乳动物类似RIKEN遗传学家在果蝇中发现了一种许多教科书上说不存在的蛋白质。这种蛋白质检测细胞中的压力,并在它们承受过度压力时让它们走上自我毁灭的道路。我们体内受损的细胞通过启动称为细胞凋亡的程序性细胞死亡的自杀过程来自我消除。这个过程对我们的健康和确保细胞不会癌变至关重要。这一过程背后的分子级联反应非常复杂,但它是由属于BH3-only蛋白质家族的一种蛋白质触发的。这些蛋白质感知细胞中的压力,并且存在于包括哺乳动物和线虫在内的许多动物中。然而,在过去的二十年里,在实验室中以果蝇为代表的所有昆虫都被认为缺乏BH3-only蛋白。相反,他们被认为依赖于不同的细胞死亡程序。但是现在,RIKEN生物系统动力学研究中心的SaKanYoo及其同事有一个惊人的发现,他们发现果蝇确实含有一种仅含有BH3的蛋白质。他们以日语中的“告别”一词命名了为其编码的基因sayonara。SaKanYoo和YukoIkegawa。图片来源:2023RIKEN当该团队使sayonara基因在果蝇翅膀中表达时,他们观察到发生细胞凋亡,导致翅膀萎缩(图1)。根据Yoo的说法,该基因隐藏在众目睽睽之下。“我们没有做任何花哨的事情,仅仅是使用了人类BH3-only蛋白的基因序列,并核对了果蝇的基因组是否具有相似的序列——这是在果蝇中寻找与人类基因相对应的基因的一种非常常见的方法。”Yoo怀疑果蝇基因组的不完整测序可以解释为什么研究人员在20年前没有在果蝇中发现该基因。“当时基因组测序还不完整,所以科学家们可能无法找到该基因,过了一段时间他们就放弃了。”果蝇缺乏BH3-only蛋白随后被载入教科书。但对Yoo来说,这是一个有趣的挑战。“我认为检查它可能会很有趣,而仅仅几个小时后,我就发现了一些看起来很像BH3-only蛋白质的东西。”这一发现表明,果蝇,可能还有其他昆虫,在细胞凋亡方面和人类以及其它物种并没有太大不同。“这意味着果蝇并不例外或有点奇怪,”Yoo说。“相反,我们发现它们具有与人类和线虫相似的调节细胞凋亡的机制。”该团队现在正在探索BH3-only蛋白被激活后究竟会发生什么。他们还在研究其他昆虫是否含有BH3-only蛋白。...PC版:https://www.cnbeta.com.tw/articles/soft/1365787.htm手机版:https://m.cnbeta.com.tw/view/1365787.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人