韩国 开发出新系统,使用红外为 30 米外的手机进行无线充电

韩国 开发出新系统,使用红外为 30 米外的手机进行无线充电 使用 1550nm 红外激光器将 400 mW 的光功率无线传输到 100 英尺(约 30 米)外,接收器将能量可转化为 85mW 的电能。 如果有物体或者人挡住了传输路线,该系统将会自动转变为安全的低功率传输模式。 红外……这东西跟可见光一样在空气中衰减都很大吧

相关推荐

封面图片

日本科学家开发出高效的256元无线供电收发器阵列

日本科学家开发出高效的256元无线供电收发器阵列 东京理工大学的科学家们为非视距 5G 通信设计了一种创新的 256 元无线供电收发器阵列。这种新颖的设计具有高效的无线电力传输和高功率转换效率,即使在链路阻塞的区域也能增强 5G 网络的覆盖范围。灵活性和覆盖范围的增强有可能使高速、低延迟通信更加普及。毫米波 5G 通信使用极高频无线电信号(24 至 100 GHz),是下一代无线通信的一项前景广阔的技术,具有高速度、低延迟和大网络容量的特点。然而,当前的 5G 网络面临两大挑战。首先是低信噪比(SNR)。高信噪比是实现良好通信的关键。另一个挑战是链路阻塞,即由于建筑物等障碍物导致发射器和接收器之间的信号中断。拟议的收发器设计可实现高功率转换效率和转换增益,即使在链路阻塞的地区也能增强 5G 网络的覆盖范围。来源:2024 年 IEEE MTT-S 国际微波研讨会波束成形是使用毫米波进行长距离通信的一项关键技术,可提高信噪比。这种技术利用传感器阵列将无线电信号聚焦成特定方向的窄波束,类似于将手电筒光束聚焦在一个点上。然而,它仅限于视距通信,即发射器和接收器必须在一条直线上,而且接收到的信号会因障碍物而变差。此外,混凝土和现代玻璃材料也会造成较高的传播损耗。因此,迫切需要一种非视距(NLoS)中继系统来扩大 5G 网络的覆盖范围,尤其是在室内。为了解决这些问题,东京工业大学(Tokyo Institute of Technology,简称"东京工业")未来科学技术跨学科研究实验室的白根敦(Atsushi Shirane)副教授领导的研究团队设计了一种新型无线供电中继收发器,用于 28 GHz 毫米波 5G 通信(如图 1 所示)。他们的研究成果发表在《2024 年 IEEE MTT-S 国际微波研讨会论文集》上。电路板包括砷化镓二极管、平衡集成电路、DPDT 开关集成电路和数字集成电路。该电路从 24GHz WPT 信号产生直流,同时将 28GHz 射频信号下变频为 4GHz 中频信号。资料来源:2024 年 IEEE MTT-S 国际微波研讨会Shirane在解释他们的研究动机时说:"此前,针对NLoS通信,人们探索了两种类型的5G中继:有源类型和无线供电类型。虽然有源中继器即使在整流器阵列较少的情况下也能保持良好的信噪比,但其功耗较高。无线供电型不需要专用电源,但由于转换增益低,需要许多整流器阵列来维持信噪比,而且使用的 CMOS 二极管的功率转换效率低于 10%。我们的设计解决了这些问题,同时还使用了市场上可买到的半导体集成电路 (IC)"。拟议的收发器由 256 个整流器阵列组成,具有 24 GHz 无线功率传输 (WPT)。这些阵列由分立集成电路(包括砷化镓二极管)、平衡器(连接平衡和不平衡(bal-un)信号线)、DPDT 开关和数字集成电路组成(参见图 2)。值得注意的是,收发器能够同时进行数据和功率传输,将 24 GHz WPT 信号转换为直流电(DC),同时促进 28 GHz 双向传输和接收。24 GHz 信号在每个整流器上单独接收,而 28 GHz 信号则利用波束成形技术进行传输和接收。两个信号可以从相同或不同的方向接收,28 千兆赫信号既可以通过 24 千兆赫先导信号的逆反射传输,也可以从任何方向传输。测试表明,与传统收发器相比,拟议的收发器可实现 54% 的功率转换效率和 -19 分贝的转换增益,同时还能保持长距离信噪比。此外,它还可实现约 56 毫瓦的发电量,并可通过增加阵列数量进一步提高发电量。这还可以提高发射和接收波束的分辨率。Shirane谈到他们的设备的好处时说:"即使在链路受阻的地方,拟议的收发器也能为毫米波5G网络的部署做出贡献,提高安装灵活性并扩大覆盖范围。"这种新型收发器将使 5G 网络更加普及,让所有人都能享受高速、低延迟的通信。编译自/scitechdaily ... PC版: 手机版:

封面图片

使用计算机电源模块从气隙系统中(无线)传输数据(至少两米)

使用计算机电源模块从气隙系统中(无线)传输数据(至少两米) COVID-bit: Keep a Distance of (at least) 2m From My Air-Gap Computer! 蹭病毒热度是吧

封面图片

DARPA计划测试无人机飞行时通过功率波束进行无线充电

DARPA计划测试无人机飞行时通过功率波束进行无线充电 图中的 MQ9-Reaper(目前使用的是内燃机)在这一高度的飞行,简单地说明了 Ifana Mahbub 博士正试图利用动力光束技术克服的壮举你可能已经对无线充电技术有所了解;一些手机已经使用近场无线技术,通过低频电磁波在很短的距离内为电池充电。这看起来像是黑魔法,但实际上并不复杂。充电装置是一个产生电磁场的线圈,接收端(如手机中的线圈)捕捉电磁波,产生电流,然后输入电池。马赫布布和她的团队正在研究远场技术,以便将电磁波发送到更远的地方。具体来说,就是完全消除无人机返回基地(RTB)更换电池或充电的需要,这可能会浪费宝贵的时间和资源,更不用说可能会对手头的任务造成损害。如果您能在无人机飞行时为其电池充电,为什么还要召回它呢?Ifana Mahbub 博士使用 Millibox 检查天线的空中性能 得克萨斯大学,达拉斯最大的障碍之一是防止电磁波束在远距离散射和功率损耗。马赫布布想出了一个巧妙的办法,那就是使用相控阵天线;这是一个由发射器和较小天线组成的系统,用于引导电磁波束沿着特定路径前进。她所创造的技术利用无人驾驶飞行器的实时遥测数据,确保视距连接,以获得最大充电量。马赫布说:"信号可能会向不希望的方向发展。我们的目标是设计波形,从而最大限度地减少路径损耗。"军用无人机,如中高空长航时(MALE)无人机,设计飞行高度为 25000 英尺(7620 米),而高空长航时(HALE)无人机通常在 50,000 英尺(15240 米)的高度飞行。战术无人机的飞行高度一般在 2000 英尺(610 米)到 5000 英尺(1524 米)之间。一架 MQ9-Reaper 无人机目前使用的是 950 轴马力(712 千瓦)涡轮螺旋桨发动机,但它在未来的使用中可能会采用 Ifana Mahbub 博士正在开发的动力光束技术,由电池供电。 通用原子能公司这项技术还有许多其他用途。想想电动汽车一边充电一边在高速公路上行驶的情景吧。马赫布布还在研究无线充电技术,该技术可以在低频、安全、FCC 批准的水平上使用,有可能为人体内的医疗植入物充电。在空中发送足以给小型飞机充电的电磁波听起来可能很可怕,但多年来我们一直在做类似的事情。无线电广播、电视广播、手机服务、雷达、Wi-Fi 甚至 GPS 都在使用电磁波。不过,充电时站在发射器和无人机之间可能不是明智之举。 ... PC版: 手机版:

封面图片

科学家开发出突破性微型光纤激光器 更锐利、更小巧、更智能

科学家开发出突破性微型光纤激光器 更锐利、更小巧、更智能 基于氮化硅光子集成电路的全封装混合集成铒激光器的光学图像,可提供光纤激光器相干性和以前无法实现的频率可调谐性。资料来源:Andrea Bancora 和 Yang Liu(洛桑联邦理工学院)光纤激光器使用掺杂稀土元素(铒、镱、钕等)的光纤作为光增益源(产生激光的部分)。光纤激光器能发出高质量的光束,输出功率高,效率高,维护成本低,经久耐用,而且体积通常比气体激光器小。光纤激光器也是低相位噪声的"黄金标准",这意味着它们的光束可以长期保持稳定。尽管如此,人们对芯片级光纤激光器微型化的需求仍在不断增长。基于铒的光纤激光器尤其令人感兴趣,因为它们符合保持激光器高相干性和稳定性的所有要求。但是,要实现光纤激光器的微型化,就必须在小尺度上保持其性能。现在,EPFL的刘洋博士和 Tobias Kippenberg 教授领导的科学家们制造出了首台芯片集成的掺铒波导激光器,其性能接近光纤激光器,将宽波长可调谐性与芯片级光子集成的实用性相结合。这一突破发表在《自然-光子学》(Nature Photonics)上。制造芯片级激光器研究人员采用最先进的制造工艺开发出了芯片级铒激光器。他们首先在超低损耗氮化硅光子集成电路的基础上构建了一个一米长的片上光腔(一组提供光反馈的反射镜)。刘博士说:"尽管芯片尺寸小巧,但我们却能将激光腔设计成米级长度,这要归功于这些微oring谐振器的集成,它们能在不增大设备物理尺寸的情况下有效延长光路。"然后,研究小组在电路中植入高浓度铒离子,选择性地产生激光所需的有源增益介质。最后,他们将电路与 III-V 族半导体泵浦激光器集成,以激发铒离子,使其发光并产生激光束。基于掺铒光子集成电路的混合集成激光器的光学图像,该激光器具有光纤激光相干性和以前无法实现的频率可调谐性。资料来源:Yang Liu(洛桑联邦理工学院)为了完善激光器的性能并实现精确的波长控制,研究人员设计了一种创新的腔内设计,其特点是基于微孔的 Vernier 过滤器,这是一种可以选择特定光频的光学过滤器。滤波器可在很大范围内对激光波长进行动态调整,从而使其在各种应用中都能发挥作用。这种设计支持稳定的单模激光,其内在线宽仅为 50 Hz,非常窄,令人印象深刻。它还具有显著的边模抑制功能激光器能够以单一、稳定的频率发光,同时将其他频率("边模")的强度降至最低。这确保了高精度应用在整个光谱范围内的"干净"和稳定输出。这种芯片级铒光纤激光器的输出功率超过 10 mW,边模抑制比超过 70 dB,性能优于许多传统系统。它还具有非常窄的线宽,这意味着它发出的光非常纯净和稳定,这对于传感、陀螺仪、激光雷达和光学频率计量等相干应用非常重要。基于微光的 Vernier 滤波器使激光器在 C 波段和 L 波段(用于电信的波长范围)内具有 40 nm 的宽波长可调谐性,在调谐和低光谱尖刺指标("尖刺"是不需要的频率)方面都超越了传统光纤激光器,同时与当前的半导体制造工艺保持兼容。将铒光纤激光器微型化并集成到芯片级设备中可降低其总体成本,使其可用于电信、医疗诊断和消费电子等领域的便携式高度集成系统。它还可以缩小光学技术在其他各种应用中的规模,如激光雷达、微波光子学、光频合成和自由空间通信。"这种新型掺铒集成激光器的应用领域几乎是无限的,"Liu 说。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

沙特阿拉伯宣布新规定,强制所有手机使用USB Type-C充电

沙特阿拉伯宣布新规定,强制所有手机使用USB Type-C充电 自 2025 年 1 月 1 日起,沙特阿拉伯将采用 USB Type-C 作为手机和各种电子产品的专用充电端口。 此举是一项综合举措的一部分,旨在改善用户体验,确保高质量的充电和数据传输技术,并通过减少电子废物促进环境可持续发展该指令的重点不仅是增强用户体验,还要避免给消费者带来额外成本,从而确保无缝过渡。 这一转变也符合环境可持续发展的原则,沙特阿拉伯预计国内充电器和充电电缆的年消耗量将大幅减少超过 220 万套。为沙特消费者节省超过 1.7 亿沙特里亚尔,并通过每年减少约 15 吨电子垃圾,为环境目标做出贡献。 该命令的实施将分为两个不同的阶段。第一阶段定于2025年1月1日开始,将涵盖广泛的设备,包括手机、平板电脑、数码相机、电子阅读器、便携式游戏机、耳机、耳麦、放大器、键盘、计算机鼠标、便携式导航系统、便携式扬声器和无线路由器。第二阶段定于2026年4月1日开始,将包括笔记本电脑。

封面图片

MIT开发出了一种无需电池、自供电的传感器

MIT开发出了一种无需电池、自供电的传感器 研究人员制造了一种温度感应装置,它能从电线周围露天产生的磁场中获取能量。人们只需将传感器夹在带电导线(可能是为电机供电的导线)周围,它就会自动收集并储存能量,用来监测电机的温度。"这就是环境电能我不必通过特定的焊接连接就能获得的能量。"电子研究实验室成员、电子工程与计算机科学(EECS)伊曼纽尔-兰兹曼(Emanuel E. Landsman)教授兼机械工程学教授 Steve Leeb 说:"这使得这种传感器非常容易安装。"在这篇刊登在《电气和电子工程师学会传感器杂志》1 月刊上的特写文章中,研究人员为能量收集传感器提供了一个设计指南,让工程师能够平衡环境中的可用能量和他们的传感需求。论文为能够在运行过程中持续感知和控制能量流的设备的关键组件绘制了路线图。这种多用途设计框架并不局限于收集磁场能量的传感器,还可应用于使用其他电源(如振动或阳光)的传感器。它可用于为工厂、仓库和商业空间构建安装和维护成本更低的传感器网络。"我们提供了一个无电池传感器的范例,它能做一些有用的事情,并证明这是一个切实可行的解决方案。希望其他人也能利用我们的框架来设计他们自己的传感器。"与 Monagle 和 Leeb 一起参与论文撰写的还有电子工程与科学研究生 Eric Ponce。美国海军学院武器与控制工程副教授约翰-多纳尔(John Donnal)没有参与这项工作,他研究的是监控舰船系统的技术。他说,要在舰船上获得电源是很困难的,因为插座很少,而且对可以插入哪些设备有严格限制。唐纳尔补充说:"例如,持续测量泵的振动可以为船员提供轴承和支架健康状况的实时信息,但为加装的传感器供电往往需要大量额外的基础设施,以至于不值得投资。像这样的能量收集系统可以在船舶上加装各种诊断传感器,大大降低整体维护成本。"研究人员必须应对三大挑战,才能开发出一种有效、无需电池的能量收集传感器。首先,系统必须能够冷启动,这意味着它可以在没有初始电压的情况下启动电子设备。他们利用集成电路和晶体管网络实现了这一点,使系统能够储存能量,直到达到一定的阈值。只有当系统储存了足够的能量,可以完全运行时,它才会开启。其次,该系统必须在不使用电池的情况下有效地储存和转换所收集的能量。虽然研究人员可以在系统中加入电池,但这会增加系统的复杂性,并可能带来火灾风险。"您甚至可能连派出技术人员更换电池的奢望都没有。相反,我们的系统是免维护的。它可以自行采集能量并运行,"Monagle 补充道。为了避免使用电池,它们采用了内部储能技术,包括一系列电容器。电容器比电池更简单,它将能量储存在导电板之间的电场中。电容器可由各种材料制成,其功能可根据各种工作条件、安全要求和可用空间进行调整。研究小组精心设计了电容器,使其足够大,能够储存设备开启和开始收集电能所需的能量,但又足够小,充电阶段不会花费太长时间。此外,由于传感器可能会在数周甚至数月后才开启进行测量,因此他们要确保电容器能够保持足够的能量,即使有些能量会随着时间的推移而泄漏。最后,他们开发了一系列控制算法,对设备收集、储存和使用的能量进行动态测量和预算。微控制器是能源管理界面的"大脑",它不断检查储存了多少能量,并推断是否要打开或关闭传感器、进行测量,或者将收割机调到更高的档位,以便收集更多能量,满足更复杂的传感需求。Monagle 解释说:"就像骑自行车时换挡一样,能量管理界面会查看收割机的工作情况,主要是看它是踩得太用力还是太轻,然后它就会改变电子负载,从而最大限度地提高收割功率,并使收割功率与传感器的需求相匹配。自供电传感器利用这一设计框架,研究人员为一个现成的温度传感器构建了一个能量管理电路。该设备采集磁场能量并用于持续采样温度数据,然后通过蓝牙将数据发送到智能手机接口。研究人员使用超低功耗电路来设计该装置,但很快发现,这些电路在崩溃前可承受的电压有严格限制。收集过多的电能可能会导致设备爆炸。为了避免这种情况,他们在微控制器中的能量收集器操作系统会在存储的能量过多时自动调整或减少收集量。他们还发现,通信传输温度传感器收集的数据是迄今为止最耗电的操作。Monagle说:"确保传感器有足够的存储能量来传输数据是一项长期的挑战,需要精心设计。"未来,研究人员计划探索能耗较低的数据传输手段,如使用光学或声学。他们还希望更严格地模拟和预测进入系统的能量,或传感器测量所需的能量,以便设备能有效地收集更多数据。"如果你只进行你认为需要的测量,你可能会错过一些真正有价值的东西。如果有更多的信息,你可能会了解到一些你意想不到的设备运行情况。我们的框架可以让您平衡这些考虑因素,"Leeb 说。"这篇论文详细阐述了实用的自供电传感器节点在现实场景中的内部结构。"佛罗里达农工大学-佛罗里达州立大学工程学院电气与计算机工程助理教授 Jinyeong Moon 说:"整体设计指南,尤其是冷启动问题,非常有帮助。计划为无线传感器节点设计自供电模块的工程师将从这些指南中获益匪浅,轻松勾选传统上与冷启动相关的繁琐清单。"这项工作得到了海军研究办公室和 Grainger 基金会的部分支持。 ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人