TDK 称取得突破,开发出能量密度提高百倍全固态电池新材料

None

相关推荐

封面图片

新款iPhone电池能量密度有望提高10%

新款iPhone电池能量密度有望提高10% 图为据称采用新金属外壳的iPhone 16 Pro 电池 。2023 年底,据称iPhone 16 Pro 电池采用金属外壳的图片泄露,媒体The Information此后详细介绍了苹果从iPhone 16 开始简化 iPhone 电池更换的工作。。新的欧盟法律要求智能手机制造商在 2025 年前确保用户可以使用方便的工具更换电池。苹果公司计划通过使用电诱导粘合剂剥离技术来实现这一目标,让用户可以使用低电压快速剥离电池,而不是使用棘手的胶条。预计这种新的电池更换方法将于今年晚些时候在至少一款 iPhone 16 机型上亮相,并可能在明年扩展到所有版本的iPhone 17。 ... PC版: 手机版:

封面图片

苹果供应商TDK宣布新进展 固态电池能量密度实现100倍突破

苹果供应商TDK宣布新进展 固态电池能量密度实现100倍突破 该公司称,其竞争对手们也在推进小型全固态电池的开发,目前已有产品最高可提供50Wh/L 的能量密度。相比之下,使用传统液体电解质的可充电硬币电池可提供约400 Wh/l的能量密度。TDK首席执行官Noboru Saito表示,“我们相信,我们新开发的固态电池材料可以为社会的能源转型做出重大贡献。我们将继续朝着早期商业化的方向发展。”最新突破TDK是一家在全球范围内久负盛名的日本电子元器件企业,2005年全资收购了ATL股权,将产品扩大到智能手机市场,目前TDK ATL占有全球三分之一以上的手机电池市场份额,也是苹果公司的主要供应商。此次,TDK所研发出的新电池将由全陶瓷材料制成,还包含了氧化物系固态电解质和锂合金负极。这种电池具有高储电能力,将能实现更小的尺寸和更长的工作时间,其中的氧化物材料则提供了高度的稳定性和安全性。这种技术将取代现有的小型电子产品中的硬币型电池。TDK计划从明年开始向客户提供新电池原型的样品,并希望能够在那之后投入大规模生产。业内专家认为,这一突破是储能技术向前迈出的最新一步,不过,在其大规模生产的道路上面临着重大障碍,尤其是在生产更大尺寸的电池上。TDK也指出,这种电池技术所使用的陶瓷材料具有更安全、更轻便等潜在优势,但同时也意味着,生产更大尺寸的电池将更加脆弱,这一点在制造汽车电池、乃至智能手机电池上存有障碍。挑战多多数据和分析公司Wood Mackenzie的高级研究分析师Kevin Shang表示,“不利于机械加工的特性”,以及大规模生产的难度和成本,都是固态氧化物电池应用于智能手机的挑战。另有业内专家指出,固态电池最重要的应用可能是在电动汽车上,因为它可以提高行驶里程。目前日本企业是推动固态电池技术商业化的先锋:丰田计划最早在2027年实现这一目标,日产计划在2027年实现,本田则计划在2030年底实现。不过,人们仍然怀疑该技术在电动汽车上应用的可行性、以及对该技术能有多快实现表示怀疑。全球最大电动汽车电池制造商宁德时代的创始人兼首席执行官曾毓群3月份在接受媒体采访时表示,日本汽车制造商等鼓吹的电动汽车固态电池距离商业化还有数年时间,这项技术还不够完善,缺乏耐用性,且仍然存在安全问题(比如电池在车祸中破裂导致的后果等)。 ... PC版: 手机版:

封面图片

苹果供应商TDK称固态电池取得突破

苹果供应商TDK称固态电池取得突破 日本 TDK 开发出了全固态电池用新材料。通过应用于在蓄电容量中非常重要的“电解质”,与以往产品相比,蓄电池的能量密度提高了100倍。预计将搭载于智能手表和助听器等小型设备,最早将于2025年实现样品供货。此次成功开发出了电解质的新材料。该公司表示,此次开发的属于氧化物类材料“更详细的信息没有公布”。通过新材料能提高能量密度这一点获得了确认。 、

封面图片

新材料可大幅提高太阳能电池板的效率

新材料可大幅提高太阳能电池板的效率 美国利哈伊大学的一个研究小组创造了一种材料,它可以大大提高太阳能电池板的效率。使用这种材料作为太阳能电池活性层的原型显示出 80% 的平均光电吸收率、很高的光激发载流子生成率以及前所未有的高达 190% 的外部量子效率 (EQE)这远远超过了硅基材料的肖克利-奎塞尔理论效率极限,并将光伏量子材料领域推向了新的高度。Chindeu Ekuma。资料来源:利哈伊大学物理学教授 Chinedu Ekuma 在《科学进展》(Science Advances)杂志上发表了他与利哈伊大学博士生 Srihari Kastuar 合作开发这种材料的论文。先进的材料特性这种材料的效率飞跃主要归功于其独特的"中间带态",即材料电子结构中的特定能级,使其成为太阳能转换的理想选择。这些态的能级在最佳子带间隙内,即材料能有效吸收阳光并产生电荷载流子的能量范围,约为 0.78 和 1.26 电子伏特。此外,这种材料在电磁波谱的红外线和可见光区域的高吸收率表现尤为出色。以 CuxGeSe/SnS 为活性层的薄膜太阳能电池示意图。资料来源:Ekuma 实验室/利哈伊大学在传统太阳能电池中,最大 EQE 为 100%,即每吸收一个太阳光光子,就能产生和收集一个电子。然而,过去几年中开发的一些先进材料和配置已证明能够从高能光子中产生和收集一个以上的电子,即 EQE 超过 100%。斯里哈里-卡斯图阿尔,利哈伊大学。资料来源:利哈伊大学虽然这种多重激子生成(MEG)材料尚未广泛商业化,但它们有可能大大提高太阳能发电系统的效率。在 Lehigh 开发的材料中,中间带态能够捕获传统太阳能电池通过反射和产热等方式损失的光子能量。材料开发与潜力研究人员利用"范德华间隙"(层状二维材料之间的原子级微小间隙)开发出了这种新型材料。这些间隙可以限制分子或离子,材料科学家通常利用它们来插入或"插层"其他元素,以调整材料特性。为了开发新型材料,利哈伊大学的研究人员在硒化锗(GeSe)和硫化锡(SnS)制成的二维材料层之间插入了零价铜原子。Ekuma 是计算凝聚态物理方面的专家,在对该系统进行了大量计算机建模并证明其理论前景后,他开发了这一原型作为概念验证。他说:"其快速反应和更高的效率有力地表明了铜掺杂GeSe/SnS作为一种量子材料在先进光伏应用中的使用潜力,为提高太阳能转换效率提供了一条途径。这是开发新一代高效太阳能电池的理想候选材料,将在满足全球能源需求方面发挥至关重要的作用。"虽然将新设计的量子材料整合到当前的太阳能系统中还需要进一步的研究和开发,但埃库马指出,用于制造这些材料的实验技术已经非常先进。随着时间的推移,科学家们已经掌握了将原子、离子和分子精确插入材料的方法。编译自:ScitechDaily ... PC版: 手机版:

封面图片

采用新型电沉积方法的全固态电池技术取得突破

采用新型电沉积方法的全固态电池技术取得突破 通过底部电沉积机制稳定锂金属阳极全固态电池的示意图。资料来源:POSTECH应对电池安全挑战在电动汽车和储能系统等各种应用中,二次电池通常依赖于液态电解质。然而,液态电解质的易燃性带来了火灾风险。这促使人们不断努力探索在全固态电池中使用固态电解质和金属锂(Li),从而提供更安全的选择。在全固态电池的运行过程中,锂被镀在阳极上,利用电子的运动产生电力。在充电和放电过程中,锂金属会经历失去电子、转化为离子、重新获得电子和电沉积回金属形态的循环过程。然而,锂的任意电沉积会迅速耗尽可用的锂,导致电池的性能和耐用性大幅降低。阳极保护的创新为解决这一问题,研究团队与浦项制铁 N.EX.T Hub 合作开发了一种由功能粘合剂(PVA-g-PAA)[2]组成的全固态电池阳极保护层。该层具有优异的锂转移特性,可防止随机电沉积并促进"底部电沉积"过程。这可确保锂从阳极表面底部均匀沉积。研究小组利用扫描电子显微镜(SEM)进行了分析,证实了锂离子的稳定电沉积和分离[3]。这大大减少了不必要的锂消耗。研究小组开发的全固态电池还证明,即使锂金属薄至 10 微米(μm)或更薄,也能长时间保持稳定的电化学性能。领导这项研究的 Soojin Park 教授表达了他的承诺,他说:"我们通过一种新颖的电沉积策略设计出了一种持久的全固态电池系统。通过进一步研究,我们的目标是提供更有效的方法来提高电池寿命和能量密度。在合作研究成果的基础上,浦项制铁控股公司计划推进锂金属阳极的商业化,这是下一代二次电池的核心材料。"说明电沉积通过电解液中的电流将金属沉积到浸没在电解液中的电极上的方法PVA-g-PAA聚(乙烯醇)-接枝-聚(丙烯酸)脱离脱离或分离,金属锂失去电子并转化为锂离子的现象编译自:ScitechDaily ... PC版: 手机版:

封面图片

上汽集团:2026年全固态电池正式量产

上汽集团:2026年全固态电池正式量产 第一阶段,产品液含量10%,也就是目前已经应用于智己L6的光年电池(半固态),能量密度超过300Wh/kg,续航里程超过一千公里。第二阶段,产品液含量5%,预计明年开始规模搭载,包括智己及其他上汽纯电/混动车型。第三阶段,产品液含量降低到0,即全固态电池,能量密度超过400Wh/kg,计划2026年量产。据介绍,上汽全固态电池基于聚合物-无机物复合电解质技术路线,上汽清陶首条全固态电池产线已经立项,计划2025年底完工,一期产能规划0.5GWh,第一阶段产品能量密度可达400Wh/kg以上,二阶段将突破 500Wh/kg。此外,上汽宣布,依托固态电池 、能量闭环、高效动力总成、智能底盘、全栈软件架构、全新电子架构等创新技术的突破和应用,上汽“七大技术底座” 全面跃迁升级进入2.0 时代。 ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人