俄罗斯卫星通讯社俄科学家发现:北极海域比其它海域更有效吸收二氧化碳 ||

None

相关推荐

封面图片

《二氧化碳矿工大亨.apk》

《二氧化碳矿工大亨.apk》 简介:在二氧化碳矿工大亨.apk中,玩家将投身于独特的二氧化碳挖矿产业。需要建立高效的挖矿基地,合理规划设备布局,招募并管理矿工,通过优化流程提升产量,同时把握市场动态,将采集的二氧化碳转化为商业利益,逐步建立起属于自己的挖矿商业帝国 标签: #二氧化碳矿工大亨 #模拟经营类游戏 #资源开采游戏 #商业策略游戏 文件大小 NG 链接:https://pan.quark.cn/s/6dae2900ccb4

封面图片

我国科学家突破二氧化碳人工合成淀粉技术 #抽屉IT

封面图片

剑桥研究人员发明可直接吸收空气中二氧化碳的新材料

剑桥研究人员发明可直接吸收空气中二氧化碳的新材料 与目前的碳捕集方法相比,带电木炭海绵还可能更加节能,因为它需要更低的温度来去除捕集到的二氧化碳,以便将其储存起来。该研究成果发表在《自然》杂志上。领导这项研究的优素福-哈米德化学系亚历山大-福斯博士说:"从大气中捕捉碳排放是最后的手段,但考虑到气候紧急情况的规模,这是我们需要研究的问题。我们必须做的第一件也是最紧迫的事情是在全球范围内减少碳排放,但温室气体清除也被认为是实现净零排放和限制气候变化最坏影响所必需的。实事求是地说,我们必须竭尽全力"。直接空气捕集是一种潜在的碳捕集方法,它使用海绵状材料从大气中去除二氧化碳,但目前的方法成本高昂,需要高温和使用天然气,而且缺乏稳定性。福斯说:"在使用多孔材料从大气中捕集碳方面,已经开展了一些很有前景的工作。"我们想看看活性炭是否可以作为一种选择,因为它便宜、稳定,而且可以大规模制造。"活性炭被广泛应用于净水器等净化领域,但它通常无法捕捉和保持空气中的二氧化碳。福斯和他的同事提出,如果活性炭可以像电池一样充电,那么它就可以成为一种合适的碳捕获材料。给电池充电时,带电离子会进入电池的一个电极。研究人员假设,用氢氧化物这种化合物给活性炭充电,可以使其适用于碳捕获,因为氢氧化物会与二氧化碳形成可逆键。研究小组利用一种类似电池的充电过程,为一种廉价的活性炭布充入氢氧根离子。在这个过程中,炭布就像电池中的电极,氢氧根离子在炭的微孔中积聚。充电过程结束后,将木炭从"电池"中取出,清洗并烘干。对带电木炭海绵的测试表明,由于氢氧化物的结合机制,它可以成功地直接从空气中捕获二氧化碳。"这是一种利用类似电池的工艺制造材料的新方法,"福斯说。"二氧化碳捕获率已经与现有材料相当。但更有希望的是,这种方法的能源密集度要低得多,因为我们不需要高温来收集二氧化碳和再生木炭海绵。"为了从木炭中收集二氧化碳,使其得到净化和储存,需要对材料进行加热,以逆转氢氧化物-二氧化碳键。目前用于从空气中捕捉二氧化碳的大多数材料都需要加热到高达 900°C 的温度,通常需要使用天然气。然而,剑桥大学团队开发的带电木炭海绵只需要加热到 90-100°C 的温度,使用可再生电力即可达到这一温度。这种材料是通过电阻加热进行加热的,基本上是由内向外加热,因此过程更快,能耗更低。不过,这种材料也有局限性,研究人员目前正在努力解决这一问题。福斯说:"我们正在努力提高二氧化碳的捕获量,尤其是在潮湿的条件下,因为在潮湿的条件下,我们的性能会下降。"研究人员说,他们的方法可以用于碳捕获以外的领域,因为木炭中的孔隙和插入其中的离子可以进行微调,以捕获一系列分子。福斯说:"这种方法是我们在 COVID-19 大流行期间提出的一个疯狂想法,所以当这些想法真正奏效时,总是令人兴奋的。这打开了一扇门,可以用简单、节能的方式为不同应用制造各种材料。"编译来源:ScitechDailyDOI: 10.1038/s41586-024-07449-2 ... PC版: 手机版:

封面图片

MIT科学家正尝试利用二氧化碳足迹发现潜在外星生命

MIT科学家正尝试利用二氧化碳足迹发现潜在外星生命 研究人员提出,如果一颗陆地行星的大气中二氧化碳含量比同一星系中的其他行星少很多,这可能是该行星表面存在液态水也可能是生命的迹象。更重要的是,这一新特征就在美国宇航局詹姆斯-韦伯太空望远镜(JWST)的观测范围之内。虽然科学家们已经提出了其他宜居迹象,但这些特征即使不是无法测量,也很难用现有技术测量。研究小组表示,这种二氧化碳相对耗尽的新特征是目前唯一可以探测到的宜居性迹象。麻省理工学院行星科学助理教授朱利安-德-维特(Julien de Wit)说:"系外行星科学的圣杯是寻找宜居世界和生命的存在,但迄今为止人们谈论的所有特征都超出了最新天文台的能力范围。现在我们有办法找出另一颗行星上是否有液态水。这也是我们在未来几年内可以实现的目标"。在这幅插图中,美国宇航局詹姆斯-韦伯太空望远镜的多层遮阳板在天文台的蜂巢镜下伸展开来。韦伯望远镜是未来十年中最重要的天文台,为全世界成千上万的天文学家服务。它研究我们宇宙历史的每一个阶段。图片来源:NASA GSFC/CIL/Adriana Manrique Gutierrez研究小组的研究成果最近发表在《自然-天文学》上。de Wit 与英国伯明翰大学的 Amaury Triaud 共同领导了这项研究。他们在麻省理工学院的合著者包括本杰明-拉克姆、普拉杰瓦尔-尼劳拉、安娜-格利登-奥利弗-贾古茨、马特伊-佩奇、亚努什-佩特科夫斯基和萨拉-西格,以及伍兹霍尔海洋研究所(WHOI)的弗里德-克莱因、法国综合理工学院的马丁-图尔贝和波尔多天体物理实验室的弗兰克-塞尔西斯。迄今为止,天文学家已经探测到 5200 多个太阳系外的世界。利用目前的望远镜,天文学家可以直接测量行星到恒星的距离以及完成一个轨道所需的时间。这些测量结果可以帮助科学家推断行星是否在宜居带内。但是还没有办法直接确认一颗行星是否真的适合居住,也就是说它的表面是否存在液态水。在整个太阳系中,科学家可以通过观察"闪光" - 即从液体表面反射的闪光来探测液态海洋的存在。例如,在土星最大的卫星土卫六上就观测到了这些闪光或镜面反射,这有助于确认该卫星上有大型湖泊。然而,要在遥远的行星上探测到类似的微光,目前的技术还无法实现。不过,德威特和他的同事们意识到,还有一种近在咫尺的宜居特征可以在遥远的世界中探测到。特里奥德说:"通过观察我们自己系统中的陆地行星,我们萌生了一个想法。"金星、地球和火星都有相似之处,即都是岩石行星,居住在相对于太阳而言较为温和的区域。地球是三颗行星中目前唯一拥有液态水的行星。研究小组还注意到另一个明显的区别:地球大气中的二氧化碳含量要少得多。我们假设这些行星是以类似的方式诞生的,如果我们现在看到一颗行星的碳含量少了很多,那么它一定是去了某个地方。唯一能从大气中移除这么多碳的过程是涉及液态水海洋的强大水循环。事实上,地球的海洋在吸收二氧化碳方面发挥了重要而持久的作用。在数亿年的时间里,海洋吸收了大量的二氧化碳,几乎相当于今天金星大气中持续存在的二氧化碳量。这种行星级的效应使得地球大气中的二氧化碳含量大大低于其行星邻居。研究报告的合著者弗里德-克莱因(Frieder Klein)说:"在地球上,大气中的大部分二氧化碳在地质时间尺度上被封存在海水和固体岩石中,数十亿年来,这有助于调节气候和宜居性。"研究小组推断,如果在一颗遥远的行星上检测到类似的二氧化碳消耗,那么这将是其表面存在液态海洋和生命的可靠信号。在广泛查阅了生物学、化学、甚至气候变化背景下的碳封存等多个领域的文献后,研究人员认为,如果我们探测到碳耗竭,那么它就很有可能是液态水和/或生命的强烈信号。寻找生命的路线图在他们的研究中,研究小组提出了一种通过寻找贫化二氧化碳特征来探测宜居行星的策略。这种搜索对"豌豆荚"系统最有效,在这种系统中,多个大小差不多的陆地行星的轨道彼此相对靠近,类似于我们的太阳系。研究小组提出的第一步是确认这些行星是否有大气层,方法很简单,就是寻找是否存在二氧化碳,预计二氧化碳在大多数行星大气层中占主导地位。"二氧化碳是一种非常强的红外线吸收体,很容易在系外行星的大气层中被探测到,"de Wit 解释说。"二氧化碳的信号可以揭示系外行星大气层的存在"。一旦天文学家确定一个星系中有多颗行星拥有大气层,他们就可以继续测量它们的二氧化碳含量,观察是否有一颗行星的二氧化碳含量明显低于其他行星。如果是这样,那么这颗行星很可能适合居住,也就是说它的表面有大量的液态水。但宜居条件并不一定意味着行星上有人居住。为了确定是否真的存在生命,研究小组建议天文学家寻找行星大气层中的另一个特征:臭氧。研究人员注意到,在地球上,植物和一些微生物会汲取二氧化碳,但汲取的量远不及海洋。不过,作为这一过程的一部分,生命形式会释放出氧气,氧气与太阳的光子发生反应,转化成臭氧一种比氧气本身更容易检测的分子。研究人员说,如果一个星球的大气层同时显示出臭氧和二氧化碳枯竭的迹象,那么这个星球很可能是一个宜居的、有人居住的世界。特里奥德说:"如果我们看到臭氧,那么它很有可能与生命消耗二氧化碳有关。如果是生命,那就是灿烂的生命。它不仅仅是几个细菌。它将是一个星球规模的生物体,能够处理大量的碳,并与之相互作用。"据研究小组估计,美国宇航局的詹姆斯-韦伯太空望远镜将能够测量附近多行星系统中的二氧化碳,可能还包括臭氧,比如TRAPPIST-1一个围绕一颗明亮恒星运行的七大行星系统,距离地球仅40光年。"TRAPPIST-1 是我们可以利用 JWST 进行陆地大气研究的少数系统之一,"de Wit 说。"现在我们有了寻找宜居行星的路线图。如果我们齐心协力,就能在未来几年内完成颠覆性的发现。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

新型反应堆系统将二氧化碳转化为可用燃料

新型反应堆系统将二氧化碳转化为可用燃料 锅炉的效率通常很高。因此,仅靠提高燃烧效率很难减少二氧化碳排放。因此,研究人员正在探索其他方法,以减轻锅炉排放的二氧化碳对环境的影响。为此,一个很有前景的策略是捕获这些系统排放的二氧化碳,并将其转化为有用的产品,如甲烷。要实施这一战略,需要一种特殊类型的膜反应器,即分配器型膜反应器(DMR),它既能促进化学反应,又能分离气体。虽然 DMR 已在某些行业中使用,但其在将二氧化碳转化为甲烷方面的应用,尤其是在锅炉等小型系统中的应用,仍相对较少。由日本芝浦工业大学的野村干弘教授和波兰 AGH 科技大学的 Grzegorz Brus 教授领导的一组日本和波兰研究人员填补了这一研究空白。他们的研究成果最近发表在《二氧化碳利用期刊》上。来自日本和波兰的研究人员开发出一种反应堆设计,可有效捕捉二氧化碳排放并将其转化为可用的甲烷燃料。这一突破可大幅减少温室气体排放,为实现碳中和的未来铺平道路。资料来源:日本 SIT 的野村干弘教授研究小组双管齐下,通过数值模拟和实验研究来优化反应器设计,以便将小型锅炉中的二氧化碳高效转化为甲烷。在模拟过程中,研究小组模拟了气体在不同条件下的流动和反应。这反过来又使他们能够最大限度地减少温度变化,确保在甲烷生产保持可靠的同时优化能源消耗。研究小组还发现,与将气体导入单一位置的传统方法不同,分布式进料设计可以将气体分散到反应器中,而不是从一个地方送入。这反过来又能使二氧化碳更好地分布在整个膜中,防止任何位置过热。野村教授解释说:"与传统的填料床反应器相比,这种 DMR 设计帮助我们将温度增量降低了约 300 度。"除了分布式进料设计,研究人员还探索了影响反应器效率的其他因素,并发现一个关键变量是混合物中的二氧化碳浓度。改变混合物中的二氧化碳含量会影响反应的效果。"当二氧化碳浓度为 15%左右(与锅炉中的二氧化碳浓度相似)时,反应器生产甲烷的效果要好得多。事实上,与只有纯二氧化碳的普通反应器相比,它能多产生约 1.5 倍的甲烷,"野村教授强调说。此外,研究小组还研究了反应器尺寸的影响,发现增大反应器尺寸有助于为反应提供氢气。不过,需要考虑一个折衷的问题,因为提高氢气可用性的好处需要谨慎的温度管理,以避免过热。因此,这项研究为解决温室气体排放的主要来源问题提供了一个前景广阔的解决方案。通过利用 DMR,可以成功地将低浓度二氧化碳排放转化为可用的甲烷燃料。由此获得的益处不仅限于甲烷化,还可应用于其他反应,从而使这种方法成为高效利用二氧化碳的多功能工具,甚至适用于家庭和小型工厂。这项研究得到了波兰国家机构、克拉科夫 AGH 大学和日本科学促进会的资助。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

中央社日本港湾设藻场吸收二氧化碳 盼助达成碳中和 ||

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人