新研究揭示复杂的绿色生物出现于十亿年前

新研究揭示复杂的绿色生物出现于十亿年前 研究中调查的不同藻类的液体样本,全部储存在哥廷根大学的藻类培养收藏馆中。图片来源:Tatyana Darienko他们的研究使他们能够回到过去,研究早在陆地植物出现之前就已出现的藻系。他们的研究结果修正了人们对一组丝状藻类陆地殖民者关系的认识,这些丝状藻类比陆地植物还要古老得多。利用现代基因测序数据,研究人员将多细胞性的出现时间精确到了近十亿年前。研究结果发表在《当代生物学》(Current Biology)杂志上。这项研究的重点是藻类Klebsormidiophyceae,这是一类以能够在全球不同生境定居而闻名的绿藻。研究小组进行了广泛的取样,调查了从溪流、河流和湖岸到沼泽、土壤、天然岩石、树皮、酸性采矿后场地、沙丘、城市墙壁和建筑物外墙等各种栖息地。丝状藻类 Klebsormidium crenulatum 的显微镜图像,这是一种陆栖藻类,由于细胞壁很厚,因此具有很强的抗干燥能力。(比例尺为 10 微米,相当于 0.01 毫米)。图片来源:Tatyana Darienko哥廷根大学微生物学和遗传学研究所的塔季扬娜-达连科博士说:"这些微小健壮的小生物在形态上具有如此高的多样性,而且还能很好地适应有时非常恶劣的生活环境,这真是令人着迷。"这次全面采样的目的是绘制克雷伯虫藻的全球分布图,强调它们的适应性、生态意义和隐藏的多样性。根据化石校准的遗传数据,研究人员进行了"分子钟分析"。在深入研究Klebsormidium藻复杂的进化史时,研究人员面临着使用传统标记解析系统发育关系的挑战。为了克服这一难题,他们采用了从来自不同大陆和栖息地的 24 个分离物的转录组中获得的数百个基因。莱布尼兹生物多样性变化分析研究所的 Iker Irisarri 博士解释说:"我们的方法被称为系统发生组学,是通过考虑整个基因组或基因组的大部分来重建进化史。这种极其强大的方法可以非常精确地重建进化关系"。多细胞藻类 Streptosarcina arenaria 的显微镜图像,它是另一种陆生藻类,栖息于干旱和热带地区。(比例尺为 10 微米,相当于 0.01 毫米)。图片来源:Tatyana Darienko他们的研究揭示了一种新的生命系统发生组学树,该树分为三个纲。哥廷根大学应用生物信息学博士研究员 Maaike Bierenbroodspot 说:"对系统发生组框架和分子时钟的深入研究揭示了 Klebsormidiophyceae 的远古祖先一个在数百万年前茁壮成长的多细胞实体,其后代在 8 亿多年前开始分成三个不同的分支。"这些结果被用来探索链格藻多细胞性的进化历史。研究表明,陆生植物、其他链格藻和Klebsormidiophyceae藻的古老共同祖先已经是多细胞的。哥廷根大学微生物学和遗传学研究所的 Jan de Vries 教授总结道:"这一发现揭示了链格藻多细胞性的遗传潜力,表明这一关键特征起源于近十亿年前的远古时代。"编译来源:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

“基因程序”让所有植物的祖先征服了旱地

“基因程序”让所有植物的祖先征服了旱地 哥廷根大学培养的两株 Zygnema。C 表示叶绿体,N 表示细胞核,P 表示类核。单细胞丝含有两个叶绿体和一个细胞核。现在,在内布拉斯加-林肯大学的领导下,一个由来自全球 20 个研究机构的 50 名科学家组成的团队绘制了四株古老的Zygnema藻类的基因组图谱,揭开了最早陆地植物的基因创新之路。内布拉斯加大学林肯分校的计算生物学家、该研究的共同通讯作者尹彦斌说:"这是一个进化的故事。它回答了最早的陆生植物是如何从水生淡水藻类进化而来这一根本问题。"基因组测序是确定生物体完整遗传物质(DNA)的过程,并将其组装成一个可计算的表示形式。它为研究物种进化和了解遗传多样性提供了宝贵的资源。如果全基因组测序是在基因所在的染色体水平上进行的,则会更有用。绘制海藻基因组图谱揭示了陆生植物的进化过程 Klára Plíhalová/Wikimedia CommonsCC BY-SA 4.0研究人员利用德克萨斯大学奥斯汀分校的藻类培养库中的两个样株和德国哥廷根大学的两个样株,组建了四个多细胞藻类样株。Zygnema属于淡水和半陆生藻类Zygnematophyceae(双星藻属),有4000多个已描述的物种,能适应紫外线、极端干燥和冰冻等极端压力。陆生植物的一个显著特点是它们的多细胞体。多细胞基因与对环境压力的反应密切相关,为植物的适应性奠定了基础。研究人员利用尖端的DNA测序技术,生成了完整的染色体级藻类基因组。通过将这些基因组与其他植物和藻类的基因组进行比较,研究人员发现了双星藻属的基因创新。他们发现了涉及生长和发育、细胞分裂、细胞壁生物合成和重塑的"基因程序",以及由环境线索触发的基因。基因的共同表达表明,它们共同感知环境并相应地调节植物生长。"我们的基因网络分析揭示了基因的共同表达,特别是那些在陆生植物和裸子植物最后的共同祖先中扩展和获得的细胞壁合成和重塑基因,"Yin说。"我们揭示了平衡环境响应和多细胞细胞生长机制的深层进化根源"。研究人员说,他们的发现将引发进一步的研究,这对生物能源、水的可持续性和碳封存都有重要意义。哥廷根大学的共同通讯作者扬-德-弗里斯(Jan de Vries)说:"我们不仅为整个植物科学界提供了宝贵的高质量资源,使他们现在可以探索这些基因组数据,而且我们的分析还发现了环境反应之间错综复杂的联系。"这项研究发表在《自然遗传学》杂志上。 ... PC版: 手机版:

封面图片

解码癌症:研究人员揭示细胞是如何"叛变"的

解码癌症:研究人员揭示细胞是如何"叛变"的 访问:NordVPN 立减 75% + 外加 3 个月时长 另有NordPass密码管理器 约翰斯-霍普金斯大学医学院的科学家们绘制了人类乳腺和肺细胞中的一条分子途径,它可能导致基因组过度复制,而这正是癌细胞的一个特征。这些发现最近发表在《科学》杂志上,揭示了当一组分子和酶触发并调节所谓的"细胞周期"(用细胞的遗传物质制造新细胞的重复过程)时,会出现什么问题。研究人员认为,这些发现可用于开发中断细胞周期障碍的疗法,并有可能阻止癌症的生长。为了复制,细胞会遵循一个有序的程序,首先复制整个基因组,然后分离基因组副本,最后将复制的DNA平均分成两个"子"细胞。人类细胞的每对染色体有 23 对一半来自母亲,一半来自父亲,包括性染色体 X 和 Y即总共 46 对,但已知癌细胞会经历一个中间状态,即拥有双倍的数量92 条染色体。这是如何发生的是一个谜。约翰霍普金斯大学医学院分子生物学和遗传学副教授塞尔吉-雷戈特(Sergi Regot)博士说:"癌症领域科学家们的一个永恒问题是:癌细胞基因组是如何变得如此糟糕的?我们的研究对细胞周期的基础知识提出了挑战,让我们重新评估了关于细胞周期如何调节的想法"。细胞周期调控面临的挑战雷戈特说,复制基因组后受到压力的细胞会进入休眠或衰老阶段,并错误地冒着再次复制基因组的风险。一般来说,这些休眠细胞在被免疫系统"识别"为有问题的细胞后,最终会被清除。但有时,尤其是随着年龄的增长,免疫系统无法清除这些细胞。如果任由这些异常细胞在体内游荡,它们就会再次复制基因组,在下一次分裂时对染色体进行洗牌,从而引发癌症。为了确定细胞周期中出现问题的分子途径的细节,雷戈特和研究生研究助理康纳-麦肯尼(Connor McKenney)领导约翰-霍普金斯大学的研究小组,重点研究了乳腺导管和肺组织中的人类细胞。原因何在?这些细胞的分裂速度通常比体内其他细胞更快,从而增加了观察细胞周期的机会。观看这段视频,了解细胞在不分裂的情况下经历两次复制基因组的细胞周期阶段。细胞核中出现的亮点表明 DNA 正在复制的位置。资料来源:约翰-霍普金斯大学医学院塞尔吉-雷戈特实验室雷戈特的实验室擅长对单个细胞进行成像,因此特别适合发现极少数没有进入休眠期、继续复制基因组的细胞。在这项新研究中,研究小组仔细观察了数千张单细胞在细胞分裂过程中的图像。研究人员开发了发光生物传感器,用于标记细胞周期蛋白依赖性激酶(CDKs)。他们发现,各种 CDK 在细胞周期的不同时期激活。在细胞受到环境压力(如干扰蛋白质生产的药物、紫外线辐射或所谓的渗透压(细胞周围水压的突然变化))后,研究人员发现 CDK 4 和 CDK 6 的活性降低了。细胞周期破坏的研究结果五到六小时后,当细胞开始准备分裂时,CDK 2 也受到了抑制。此时,一种名为无丝分裂促进复合物(APC)的蛋白质复合物在细胞分裂前的阶段被激活,这一步骤被称为有丝分裂。Regot说:"在研究中的受压环境中,APC激活发生在有丝分裂之前,而通常人们只知道它在有丝分裂过程中激活。"当暴露在任何环境压力下时,约 90% 的乳腺细胞和肺细胞会离开细胞周期,进入安静状态。在他们的实验细胞中,并非所有细胞都安静了下来。研究小组发现,约有 5%-10%的乳腺细胞和肺细胞重返细胞周期,再次分裂染色体。通过另一系列实验,研究小组发现,所谓的应激活化蛋白激酶活性的增加与一小部分细胞脱离安静阶段并继续将基因组翻倍有关。雷戈特说,目前正在进行一些临床试验,测试DNA损伤剂与阻断CDK的药物。联合用药有可能促使一些癌细胞将基因组复制两次,产生异质性,最终产生抗药性。也许有药物可以阻止 APC 在有丝分裂前激活,从而防止癌细胞二次复制基因组,防止肿瘤阶段性进展。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

《.细胞生物学 》

《.细胞生物学 》 简介:研究细胞结构、功能及其生命活动规律的学科,涵盖遗传机制、信号传导、增殖分化等核心过程,为揭示疾病机理、开发新型疗法及生物技术提供理论支撑。 亮点:融合分子生物学与生物化学技术,近年突破包括基因编辑、干细胞重编程及单细胞测序,推动再生医学与精准医疗发展。 标签:#分子机制 #细胞动态 #基因编辑 #干细胞技术 #再生医学 #精准医疗 链接:https://pan.quark.cn/s/403419fc965e

封面图片

《.微生物学 》

《.微生物学 》 简介:研究微小生物的学科,涵盖细菌、病毒、真菌等单细胞或多细胞生物的结构、功能及其生态作用。通过揭示微生物的代谢机制与遗传特性,推动医学(如抗生素与疫苗研发)、农业(生物肥料)及工业(发酵技术)等领域的创新应用。 亮点:在公共卫生(如病原体防控)、环境治理(污染物降解)和生物能源开发中发挥关键作用。分子生物学与基因组学技术加速了微生物资源的挖掘,其跨学科特性串联起化学、医学与环境科学的前沿研究。 标签:#微生物研究 #生命科学基础 #抗生素开发 #基因工程 #公共卫生 #环境治理 链接:https://pan.quark.cn/s/f91a0182d1eb

封面图片

开创性的方法揭示了地球表面深处微生物群落的关键信息

开创性的方法揭示了地球表面深处微生物群落的关键信息 由比奇洛海洋科学实验室研究人员领导的科学家团队开发出一种创新方法,将生活在地球表面深处无氧环境中的单个微生物的遗传学和功能联系起来。测量这两个属性更重要的是将它们联系起来长期以来一直是微生物学的一项挑战,但对于了解微生物群落在碳循环等全球过程中的作用至关重要。比奇洛实验室单细胞基因组学中心开发的新方法使研究人员发现,在死亡谷地下近半英里处的地下含水层中,一种消耗硫酸盐的细菌不仅数量最多,而且是最活跃的生物。研究结果发表在《美国国家科学院院刊》上,表明这种方法可以成为测量不同生物在这些极端环境中活跃程度的有力工具。洞察微生物群落动力学"以前,我们不得不假定所有细胞都以相同的速率运行,但现在我们可以看到,微生物群落个体成员之间的活动水平存在很大差异,"研究科学家兼论文第一作者梅洛迪-林赛说。"这有助于我们了解这些微生物群落的能力,以及它们可能对全球生物地球化学循环产生的影响"。沙漠研究所团队从死亡谷的钻孔中提取样本。图片来源:杜安-莫泽,沙漠研究所最近的研究是一个更大项目的一部分,该项目将微生物的遗传密码它们能做什么的蓝图与它们在任何特定时刻实际在做什么联系起来。方法论方面的进展由美国国家科学基金会 EPSCoR 计划资助的"基因组到表型组"项目是毕格罗实验室、沙漠研究所和新罕布什尔大学之间的一项合作项目。该项目利用单细胞基因测序的最新进展,创造性地采用流式细胞仪估算细胞内呼吸等过程的速率。流式细胞仪是一种分析单个环境微生物的方法,比奇洛实验室将其从生物医学科学中改造出来,使研究人员能够快速分拣出含水层水样中的活微生物。这些微生物被一种特殊设计的化合物染色,当细胞内发生某些化学反应时,这种化合物就会在流式细胞仪的激光下发光。比奇洛实验室的实习学生通过实验得出了细胞在激光下发出荧光的程度与这些反应速度之间的关系,然后将其应用到死亡谷的样本中。测量并分离出活性细胞后,研究小组对它们各自的基因组进行了测序。研究人员还使用了元转录组学(一种确定哪些基因正在活跃表达的方法)和放射性同位素示踪剂(一种测量微生物群落活动的更传统的方法)。这样做既是为了"双重检查"他们的结果,也是为了获得更多关于这些微生物的基因能力与它们实际活动之间联系的信息。单细胞基因组学中心是世界上唯一一家为研究人员提供这种新技术的分析机构。"这项研究对我们的研究团队和南加州地质调查局来说是一个令人兴奋的机会,可以帮助我们更好地了解地下巨大而神秘的微生物生态系统,"比奇洛实验室高级研究科学家、南加州地质调查局局长兼该项目的首席研究员拉穆纳斯-斯泰潘纳斯卡斯(Ramunas Stepanauskas)说。这项新研究首次展示了这种量化单个细胞活性的方法。2022 年底,研究小组发表了关于海水中微生物的研究结果,显示一小部分微生物消耗了海洋中的大部分氧气。在这篇新论文中,研究小组扩展了这一方法,表明它可用于低生物量环境中不依赖氧气的微生物。例如,在从加利福尼亚州地下含水层提取的样本中,科学家们估计每毫升水中有数百个细胞,而一般地表水每毫升中有数百万个细胞。"我们一开始研究海洋中的有氧呼吸生物,因为它们更活跃,更容易分类,也更容易在实验室中生长,"林赛说。"但有氧呼吸只是微生物学中可能存在的一个过程,所以我们想在此基础上进一步拓展"。扩大微生物研究范围研究结果证实,Candidatus Desulforudis audaxviator 细菌(绰号"勇敢的旅行者")不仅是这一环境中数量最多的微生物,也是最活跃的微生物,它能将硫酸盐还原为能量。与之前研究中的海水样本相比,研究小组测得的总体活性率较低,但单个微生物的活性差异很大。研究小组目前正努力将他们的方法应用于测量其他厌氧反应,如硝酸盐还原,并应用于新的环境,包括缅因州沿海的沉积物。由美国国家航空航天局(NASA)资助的一个相关项目也使林赛和她的同事们能够在海洋深处的地下测试这种方法。"现在,我们正在世界各地进行这些点测量,它们确实有助于我们更好地了解微生物的活动情况,但我们需要扩大其规模。因此,我们正在考虑如何将这种方法应用到新的地方,甚至有可能应用到其他星球上,并扩大应用范围。"编译自:ScitechDaily ... PC版: 手机版:

封面图片

科学家揭示对基因组健康至关重要的145个基因

科学家揭示对基因组健康至关重要的145个基因 2月14日,《自然》杂志发表了一项新研究,通过对近千个转基因小鼠品系进行系统筛选,发现了一百多个与DNA损伤有关的关键基因。这项工作为癌症进展和神经退行性疾病提供了见解,也为蛋白质抑制剂提供了潜在的治疗途径。基因组包含生物细胞内的所有基因和遗传物质。当基因组稳定时,细胞就能准确地复制和分裂,将正确的遗传信息传递给下一代细胞。尽管基因组非常重要,但人们对影响基因组稳定性、保护、修复和防止 DNA 损伤的遗传因素知之甚少。突破性研究及其影响在这项新研究中,威康-桑格研究所的研究人员与剑桥大学英国痴呆症研究所的合作者一起,着手更好地了解细胞健康的生物学特性,并找出维持基因组稳定性的关键基因。研究小组利用一组转基因小鼠品系,确定了 145 个在增加或减少异常微核结构的形成中起关键作用的基因。这些结构表明基因组不稳定和 DNA 损伤,是衰老和疾病的常见标志。当研究人员敲除DSCC1基因时,基因组不稳定性的增加最为显著,异常微核的形成增加了五倍。缺乏该基因的小鼠具有与人类凝聚素病症患者相似的特征,这进一步强调了这项研究与人类健康的相关性。通过 CRISPR 筛选,研究人员发现DSCC1缺失引发的这种效应可以通过抑制蛋白质 SIRT1 得到部分逆转。这些发现有助于揭示影响人类基因组一生健康和疾病发展的遗传因素。该研究的资深作者、剑桥大学英国痴呆症研究所的加布里埃尔-巴尔穆斯(Gabriel Balmus)教授说:"继续探索基因组不稳定性对于开发针对遗传根源的定制治疗方法至关重要,其目标是改善各种疾病的治疗效果和患者的整体生活质量。我们的研究强调了SIRT抑制剂作为治疗粘连蛋白病和其他基因组疾病途径的潜力。它表明,早期干预,特别是针对 SIRT1 的干预,有助于在基因组不稳定性发展之前减轻与之相关的生物变化。"这项研究的第一作者、威康桑格研究所的大卫-亚当斯(David Adams)博士说:"基因组稳定性是细胞健康的核心,影响着从癌症到神经变性等一系列疾病,但这一直是一个探索相对不足的研究领域。这项工作历时15年,体现了从大规模、无偏见的基因筛选中可以学到什么。所发现的 145 个基因,尤其是那些与人类疾病相关的基因,为开发治疗癌症和神经发育障碍等基因组不稳定疾病的新疗法提供了有希望的靶点。"研究要点:对基因组造成损害的各种来源包括辐射、化学接触以及 DNA 复制或修复过程中的错误。微核是一种小的异常结构,通常被称为"突变工厂",其中含有错位的遗传物质,而这些物质本应在细胞核中。它们的存在意味着患癌症和发育障碍等疾病的风险增加。凝聚蛋白病是一组因凝聚蛋白功能障碍而导致的遗传病,凝聚蛋白对细胞分裂过程中染色体的正常组织和分离至关重要。这可能导致一系列发育异常、智力障碍、独特的面部特征和生长迟缓。当 SIRT1 蛋白被抑制时,DNA 损伤就会减少,它们就能挽救与内聚力破坏相关的DSCC1缺失所带来的负面影响。这种作用是通过恢复一种名为 SMC3 的蛋白质的化学水平实现的。编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人