研究人员更接近于解决氢脆问题带来的巨大挑战

研究人员更接近于解决氢脆问题带来的巨大挑战 该研究成果发表在《自然-通讯》(Nature Communications)上,由副校长(研究-企业与参与)朱莉-凯尔尼(Julie Cairney)教授和陈怡生(Eason)博士领导的研究小组展示,该小组成员包括刘然明博士和博士生刘鹏宇。他们使用了悉尼大学首创的一种先进的显微镜技术,即低温原子探针断层扫描技术,可以直接观察材料中的氢分布。"我们希望这项研究能让我们更接近揭示钢中发生氢脆的确切原因,为大规模解决氢气运输和储存问题铺平道路,"凯尔尼教授说,他所在的澳大利亚显微镜和微分析中心就是这项研究的开展地。氢脆是氢导致钢等高强度材料变脆和开裂的过程。研究人员说,氢脆是向氢经济过渡的最大障碍之一,因为它阻碍了氢在高压下的有效储存和运输。因此,了解和解决脆化问题对可再生能源市场来说是一个价值数十亿美元的问题,德勤估计,到 2050 年,清洁氢气市场规模将达到 1.4 万亿美元。"大规模氢经济的未来在很大程度上取决于这个问题。氢是出了名的阴险;作为最小的原子和分子,它渗入材料,然后裂开并破坏它们。"陈博士说:"要想有效地大规模生产、运输、储存和使用氢气,这种情况并不理想。"钼被添加到钢中,并与其他元素结合,形成一种被称为"碳化物"的极其坚硬的陶瓷。碳化物通常被添加到钢中,以提高钢的耐久性和强度。利用先进的显微镜技术,研究人员看到被捕获的氢原子位于碳化物位点的核心,这表明钼的加入有助于捕获氢。与之相比,基准碳化钛钢没有显示出相同的氢捕获机制。添加钼有助于提高碳空位的存在,碳空位是碳化物中的一种缺陷,能有效捕获氢气。添加的钼仅占钢材总量的 0.2%,研究人员称,这使其成为一种具有成本效益的降低脆性的策略。研究人员认为,铌和钒也可能对钢材产生类似的影响。编译来源:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

新型纳米孔材料储存的氢比固态氢本身多67%

新型纳米孔材料储存的氢比固态氢本身多67% 在所有燃料中,它的单位质量能量最高,但储存起来很麻烦。把它保存在气罐里,需要大约 700 个大气压的压缩。如果将其保存为液体,则需要保持比绝对零度高出 20 度的低温。即使把它压缩成超冷液体,它的重量可能很轻,但它所占的体积却令人吃惊,而且很不方便,这使得它既耗能,又很难在空间有限的地方进行包装。现在,韩国研究人员称,他们已经创造出一种材料,能以比低温液态氢密度高一倍的密度储存氢。这项新研究的第一作者、蔚山国立科学技术研究院(UNIST)的 Hyunchul Oh 说:"我们的创新材料代表了氢气存储领域的范式转变,为传统方法提供了令人信服的替代方案。"作为一种分子,氢可以通过一种叫做物理吸附的过程物理吸附到多孔材料中。高多孔材料以前曾展示过在单位质量内储存大量氢的能力,但它们在小体积内储存大量能量方面却一直很吃力。由五个氢分子(紫色和红色)组成的分子团占据了材料中的一个孔隙直到现在。研究小组合成了纳米多孔硼氢化镁(Mg(BH4)2),这种框架由部分带负电荷的氢原子构成纳米孔的内表面,能够吸附氢气和氮气。虽然氮气和氢气都能进入孔隙,但研究人员发现,由于氮气和氢气在孔隙中占据不同的吸附位点,氢气的气体吸收量要大三倍。研究人员观察到,小孔中氢密度高的原因在于氢分子的各向异性(与方向有关)形状,在接近环境压力时,氢分子通常呈紧密堆积的球状。这种材料以三维排列方式储存了五个氢分子团,从而提高了容积容量。他们发现,Mg(BH4)2每升孔隙容积可存储前所未有的 144 克氢,而低温液态氢只能存储 70.8 克/升,固态氢甚至只能存储 86 克/升。研究人员表示,他们的研究成果解决了大规模氢气存储的关键难题,提高了氢气的效率和经济可行性。这会是氢动力飞机的解决方案吗?可能不会。正如几年前ZeroAvia 公司的 Val Miftakhov 向我们解释的那样,航空环境中的液态氢系统可以实现 30% 左右的氢气质量分数,另外 70% 的重量则由储氢罐和低温冷却设备增加。根据这项研究,这种纳米孔存储材料的质量分数为 21.7%,因此其单位重量所携带的能量是储罐中气态氢气的两倍,但低温液态系统会更轻。另一方面,它肯定能在长途运输或卡车运输中发挥作用,因为在这种情况下,重量不是问题,而体积则更为重要。当然,这似乎也是目前静态储能的最佳方法,在这种情况下,氢气的使用或多或少会像电池一样。我们还想进一步了解它是如何释放的,在什么样的温度和压力下工作,以及以这种方式储存氢气的往返能量损失可能是多少,但这无疑是该领域的一个突破性进展。这项研究发表在《自然-化学》杂志上。 ... PC版: 手机版:

封面图片

催化剂将氢电解器中的铱用量减少了95%

催化剂将氢电解器中的铱用量减少了95% 访问:Saily - 使用eSIM实现手机全球数据漫游 安全可靠 源自NordVPN 日本理化学研究所可持续资源科学中心(CSRS)的中村隆平(Ryuhei Nakamura)领导的研究人员在今天(5 月 9 日)发表在《科学》杂志上的一项研究中报告了一种新方法,该方法将反应所需的铱量减少了 95%,而且不会改变氢的生产率。这一突破将彻底改变我们生产生态友好型氢气的能力,并有助于实现碳中和的氢经济。合成氧化铱的扫描电子显微镜图像(D)和分散在电沉积在耐腐蚀铂涂层钛网上的氧化锰上的铱(亮点)的扫描透射电子显微镜图像(E、F、G)。资料来源:理化学研究所制氢挑战世界上 70% 的面积被水覆盖,氢气是真正的可再生能源。然而,从水中提取氢气的规模还无法与化石燃料能源生产相媲美。目前,全球能源产量接近 18 兆瓦,这意味着在任何特定时刻,全球平均生产约 18 万亿瓦特的电力。替代性绿色能源生产方式要想取代化石燃料,就必须能够达到相同的能源生产率。从水中提取氢气的绿色方法是一种需要催化剂的电化学反应。这种反应的最佳催化剂产氢率最高、最稳定的催化剂是稀有金属,其中铱是最好的催化剂。但铱的稀缺是个大问题。共同第一作者孔爽说:"铱是如此稀有,以至于将全球氢气生产规模扩大到太瓦级估计需要40年的铱。"催化剂开发的创新理化学研究所 CSRS 的生物功能催化剂研究小组正试图绕过铱的瓶颈,寻找其他方法来长时间高速生产氢气。从长远来看,他们希望开发出基于普通土金属的新型催化剂,这种催化剂将具有高度的可持续性。事实上,该团队最近使用一种氧化锰作为催化剂,成功地将绿色制氢稳定在一个相对较高的水平。不过,以这种方式实现工业水平的生产还需要数年时间。中村隆平说:"我们需要一种方法来弥合稀有金属电解槽与普通金属电解槽之间的差距,这样我们就能在多年内逐步过渡到完全可持续的绿色氢气。"目前的研究正是通过将锰与铱相结合来实现这一目标。研究人员发现,当他们把铱原子分散在一块氧化锰上,使它们不会相互接触或凝结在一起时,质子交换膜(PEM)电解槽中的氢气产生速度与单独使用铱时相同,但铱含量减少了 95%。潜力和未来方向使用这种新型催化剂,可以连续生产氢气超过 3000 小时(约 4 个月),效率高达 82%,且无降解。合著者李爱龙说:"氧化锰和铱之间意想不到的相互作用是我们取得成功的关键。这是因为这种相互作用产生的铱处于罕见的高活性 +6 氧化态"。中村隆平认为,新催化剂达到的制氢水平极有可能立即派上用场。他说:"我们希望我们的催化剂能够很容易地转移到现实世界的应用中,这将立即提高目前 PEM 电解器的容量。"研究小组已经开始与工业界的合作伙伴合作,他们已经能够改进最初的铱锰催化剂。今后,理化学研究所 CSRS 研究人员计划继续研究铱和氧化锰之间的特定化学作用,希望能进一步减少必要的铱含量。同时,他们将继续与工业合作伙伴合作,并计划在不久的将来在工业规模上部署和测试这种新型催化剂。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

研究人员解决了量子信息传输的基础问题:在超小范围内构建通信能力

研究人员解决了量子信息传输的基础问题:在超小范围内构建通信能力 东京大学工业科学研究所的研究人员解决了量子信息传输中的一个基础性问题,这将极大地提高集成电路和量子计算的实用性。资料来源:东京大学工业科学研究所现在,在最近发表于《物理评论快报》上的一项研究中,东京大学工业科学研究所的研究人员正在解决这个问题:他们开发了一种新技术,可以在几十到一百微米的范围内传输量子信息。这一进展可以改善即将问世的量子电子产品的功能。研究人员如何在同一量子计算机芯片上将量子信息从一个量子点传输到另一个量子点?一种方法可能是将电子(物质)信息转换成光(电磁波)信息:通过产生光-物质混合态。之前的工作与量子信息处理的单电子需求不符。改进高速量子信息传输方式,使其在设计上更加灵活,并与现有的半导体制造工具兼容,是研究小组的研究目标。"在我们的工作中,我们将量子点中的几个电子耦合到一个称为太赫兹分环谐振器的电路中,"该研究的第一作者黑山和之解释说。"这种设计非常简单,适合大规模集成。"以往的工作都是基于谐振器与数千到数万个电子集合的耦合。事实上,耦合强度是基于这个电子群的大尺寸。相比之下,本系统只限制了几个电子,适合量子信息处理。然而,电子和太赫兹电磁波都被限制在一个超小区域内。因此,耦合强度与多电子系统相当。资深作者 Kazuhiko Hirakawa 说:"我们很兴奋,因为我们利用先进纳米技术中普遍存在的结构这些结构通常被集成到半导体制造中来帮助解决一个实际的量子信息传输问题。我们还期待着将我们的发现应用于理解光电子耦合态的基础物理学。"这项工作在解决之前量子信息传输中的一个棘手问题上迈出了重要一步,因为该问题限制了实验室研究成果的应用。此外,这种光物质相互转换被认为是基于半导体量子点的大规模量子计算机的基本架构之一。由于研究人员的成果是基于半导体制造中常见的材料和程序,因此实际应用应该很简单。编译自:ScitechDaily ... PC版: 手机版:

封面图片

迅雷被安全研究人员爆锤 懈怠回应导致大量漏洞被研究人员公开

迅雷被安全研究人员爆锤 懈怠回应导致大量漏洞被研究人员公开 日前安全研究人员 Wladimir Palant 在自己的网站上手撕迅雷,指责迅雷客户端存在大量漏洞的同时,迅雷对修复工作不积极或者说不愿意与研究人员沟通,最终结果是研究人员在期满 (90 天) 后公布了这些漏洞。从研究人员公布的研究来看,迅雷客户端其实就是一个筛子,上面遍布漏洞,因为迅雷为了尽可能留住用户提供了大量功能,这些功能都是拼凑的。由于漏洞以及相关细节比较多,这里我们简单梳理下,想要了解所有漏洞及完整细节可以在研究人员的博客中查看。下面是漏洞时间线:2023 年 12 月 6 日~12 月 7 日:研究人员通过迅雷安全响应中心提交了 5 个漏洞报告,实际上报告的漏洞数量更多,在报告中研究人员明确提到最终披露时间是 2024 年 3 月 6 日。2023 年 12 月 8 日:研究人员收到回信,迅雷安全响应中心称已经收到报告,一旦复现漏洞将与研究人员联系 (这应该是自动回复的通知模板)。2024 年 2 月 10 日:研究人员向迅雷提醒称距离漏洞公布只有 1 个月时间了,因为有些厂商会忘记截止日期,这个并不少见,于是研究人员发了提醒。2024 年 02 月 17 日:迅雷安全响应中心称对漏洞进行了验证,但漏洞尚未完全修复,也就是确认了漏洞存在,但由于 shi 山代码太多,一时三刻没法修复,为什么说是 shi 山代码看后面的说明。附研究人员关于迅雷安全响应中心的吐槽:限制仅通过 QQ 或微信登录,这对于国外研究人员来说很难,幸好在底部还留了个邮箱。安全问题一:使用 2020 年 4 月的 Chromium迅雷客户端为了尽可能留住用户并塞广告,直接集成了一个浏览器,这个使用迅雷的用户应该都知道,还集成了诸如播放器等功能。然而迅雷当然不会自己开发浏览器,迅雷集成了 Chromium 浏览器,这没问题,但集成的版本还是 2020 年 5 月发布的 83.0.4103.106 版。这个老旧版本存在数不清的漏洞,漏洞多到令人发指,毕竟已经四年了,有大量漏洞是很正常的,而且有一些高危漏洞,而迅雷至今没有更新。这也是前文提到的 shi 山代码太多的原因之一,对迅雷来说或许升级个 Chromium 版本都是很难的事情,因为要处理一大堆依赖。安全问题二:迅雷还集成 2018 年的 Flash Player 插件所有浏览器都在 2020 年 12 月禁用了 Adobe Flash Player 插件,这个播放器插件也存在巨量漏洞,但迅雷直接忽略了。迅雷内置的 Chromium 浏览器还附带了 Flash Player版,这个版本是 2018 年 4 月发布的,迅雷甚至都没更新到 Adobe 发布的最后一个安全更新。安全问题三:拦截恶意地址简直是搞笑迅雷也用实际行动告诉我们什么是草台班子,迅雷内置的浏览器有拦截恶意地址的功能,包括非法网站和恶意网站等。但迅雷还特别做了一个白名单机制,即域名中的白名单在内置浏览器中的访问是不受限制的,白名单域名就包括迅雷自己的 xunlei.com在初始版本中,研究人员提到任意域名结尾追加?xunlei.com 那就能通过验证,比如 https:// ... 是个大聪明。在后续版本中研究人员删除了上面的说法,但保留了另一个问题,那就是 https:// ./ 可以访问,因为迅雷无法处理 com.安全问题四:基于老旧的 Electron 框架开发迅雷主要就是基于 Electron 框架开发的,但迅雷使用的版本是 830.4103.122 版,发布于 2020 年 4 月份,和上面提到 Chromium 老旧版本情况类似,也都是筛子,这也是 shi 山代码之二,迅雷肯定因为某种原因好几年了都不敢动这些框架版本。上面只是其中几个典型的安全问题,研究人员在博客中还罗列了关于插件、API、过时的 SDK 等大量问题,内容比较多这里不再转述。迅雷修复了吗?迅雷并没有直接忽视研究人员的报告,事实上研究人员发现自己的实例代码页面被访问,说明迅雷的工程师也确实在处理。同时研究人员在 2 月份的迅雷新版本中还注意到迅雷删除了 Adobe Flash Player 集成,但如果用户主动安装了,那还是会被激活。所以可以断定迅雷并没有直接忽视漏洞,只不过由于 shi 山代码太多,一时三刻解决不了,而迅雷最大的问题就是没有及时与研究人员沟通,整整三个月迅雷除了一个自动回复外,就在 2 月份回了表示还在修复的邮件,既没有提到是否需要延长漏洞公开时间、也没有与研究人员沟通细节。于是到 3 月 6 日研究人员直接公布了所有漏洞,迅雷好歹也有千万级的用户,无论是迟迟不更新框架版本还是懈怠处理漏洞,都会给用户造成严重的安全问题。目前迅雷并未彻底解决研究人员提到的所有问题 (应该只修复了一小部分?),建议使用迅雷的用户注意安全,如果不经常使用的话,可以考虑直接卸载掉。 ... PC版: 手机版:

封面图片

安全研究人员使用假红外相机成功绕过 Windows Hello 生物识别验证

安全研究人员使用假红外相机成功绕过 Windows Hello 生物识别验证 问题在于Windows Hello似乎很愿意接受任何具有红外功能的相机作为验证相机 , 这让黑客可以篡改实际数据流。 研究人员使用特制设备向 Windows Hello 发送两帧数据,第1帧是目标用户的真实红外捕获、第2帧是空白黑帧。其中真实红外捕获用来获得初步的认证 ,  而空白的黑帧则用来欺骗 Windows Hello 活体检测机制达到验证目的。 CyberArk Labs 的研究人员早在 3 月份发现了该漏洞,并该漏洞命名为 研究人员向微软通报漏洞后已经获得微软公司的确认,微软表示此漏洞将在后续更新进行修复。另外微软还提供用于增强生物识别安全性的临时性方案,该方案可以限制只使用来自 OEM 制造商信任的摄像头。 (,) 也就是说打了补丁之后,你买的灵车摄像头可能就不能用于 Windows Hello 了

封面图片

研究人员成功冷却了正电子原子 对反物质研究产生了重大影响

研究人员成功冷却了正电子原子 对反物质研究产生了重大影响 正电子冷却。欧洲核子研究中心的 AEgIS 合作小组在实验中演示了使用基于变石的激光系统对正电子进行激光冷却。资料来源:欧洲核子研究中心-米兰理工大学研究人员成功冷却了正电子原子,对反物质研究产生了重大影响,并促成了量子电动力学的新实验和反物质玻色-爱因斯坦凝聚物的可能性。被正电子束击中的多孔靶(室温)中流出的 Ps 原子的等效温度从 380 K 降至 170 K,相应地,Ps 均方根速度的横向分量也从 54 km/s 降至 37 km/s。正电子的独特性质Ps 是氢的小兄弟,正电子取代了质子。因此,它比氢轻约 2000 倍,能级降低了 2 倍。它很不稳定:在真空和基态下,两个粒子的自旋平行,它的湮灭寿命只有 142 毫微秒。在其短暂的生命周期内,必须进行 Ps 冷却,这使得这一过程相对于普通原子而言极具挑战性。使用大带宽脉冲激光器的好处是可以冷却大部分正电子云,同时延长它们的有效寿命,从而在冷却后获得更多的 Ps 供进一步实验使用。对反物质研究的影响AEgIS 实验的目的是测量反氢气的重力加速度(作为反物质弱等价原理的测试),在该实验中,最后一个加速度是通过处于激发态的 Ps 与被困反质子之间的反应获得的。Ps的速度越低,形成反氢的概率就越高,因此必须尽可能产生动能最低的Ps。推进基础科学和潜在应用获得足够"冷"的 Ps 原子对基础科学至关重要,例如,对 Ps 激发能级进行精密光谱分析,可以前所未有的精度测试量子电动力学,或用纯轻子系统测试等效原理。此外,建立一个冷铂原子集合体的可能性可以为第一个反物质玻色-爱因斯坦凝聚态(BEC,已通过激光冷却普通原子获得)铺平道路,在这种状态下,量子力学现象会宏观地显现出来。正电子玻色-爱因斯坦凝聚态将导致受激湮灭,这已被提议作为产生伽马射线能量范围内的相干电磁辐射的一种方法。该成果已作为编辑亮点发表在《物理评论快报》上。编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人