科学家发明了不会起火的可回收“水电池” 容量大、寿命长

科学家发明了不会起火的可回收“水电池” 容量大、寿命长 首席研究员、特聘教授马天一说,他们的电池处于水性储能设备这一新兴领域的最前沿,取得的突破大大提高了该技术的性能和寿命。皇家墨尔本理工大学理学院的 Ma 说:"我们设计和制造的是水金属离子电池,也可以称之为水电池。"该团队用水来替代有机电解质,使电流在正负极之间流动,这意味着他们的电池不会像锂离子电池那样起火或爆炸。Ma 表示:"我们的电池可以安全地拆卸,其材料可以重复使用或回收,从而解决了全球消费者、工业界和政府在使用现有储能技术时所面临的报废处理难题。我们使用的镁和锌等材料在自然界中含量丰富、价格低廉,而且与其他种类电池中使用的替代品相比毒性较低,这有助于降低制造成本,减少对人类健康和环境的风险。"水电池制造工艺的简易性有助于实现大规模生产。能量储存和生命周期潜力如何?该团队制作了一系列小规模试验电池,用于多项同行评审研究,以应对各种技术挑战,包括提高储能能力和寿命。在发表于《先进材料》(Advanced Materials)的最新研究成果中,他们战胜了一个重大挑战枝晶,一种破坏性树枝状突起的生长,这种尖刺状金属突起可能导致短路和其他严重故障。研究小组在受影响的电池部件上涂上了一种名为铋的金属及其氧化物(又称铁锈),作为防止枝晶形成的保护层。结果呢?"现在,我们的电池寿命大大延长,可与市场上的商用锂离子电池媲美,是实际应用中高速和高强度使用的理想选择。凭借惊人的容量和更长的使用寿命,我们不仅推进了电池技术的发展,还成功地将我们的设计与太阳能电池板整合在一起,展示了高效、稳定的可再生能源存储。"该团队的水电池在能量密度方面正在缩小与锂离子技术的差距,目的是尽可能减少单位电量所占用的空间。"我们最近制造了一种镁离子水电池,其能量密度为每公斤 75 瓦时(Wh kg-1),比最新的特斯拉汽车电池高出 30%"。皇家墨尔本理工大学特聘教授马天一(左)和朱凌峰博士与团队的水电池。图片来源:皇家墨尔本理工大学 Carelle Mulawa-Richards这项研究发表在《小型结构》上。"下一步是通过开发新的纳米材料作为电极材料,提高我们水电池的能量密度"。Ma 说,镁可能是未来水电池的首选材料。"镁离子水电池有可能在短期内(比如一到三年)取代铅酸电池,并有可能在长期(5 到 10 年后)取代锂离子电池。镁比锌和镍等替代金属更轻,具有更大的潜在能量密度,将使电池充电时间更快,更有能力支持耗电设备和应用。"潜在应用Ma 说,团队的电池非常适合大规模应用,是电网存储和可再生能源集成的理想选择,尤其是在安全方面。随着技术的进步,其他类型的较小规模储能应用,如为人们的家庭和娱乐设备供电,可能会成为现实。作为澳大利亚研究理事会联系项目的一部分,Ma 的团队与行业合作伙伴、位于悉尼的技术创新企业 GrapheneX 合作,不间断开发水电池。"我们还与澳大利亚、美国、英国、日本、新加坡、中国和其他国家的知名大学和研究机构的研究人员和专家密切合作。这些合作促进了知识交流和尖端设施的使用。通过利用这个全球团队在不同领域的专业知识,我们可以从不同角度应对所涉及的复杂挑战"。编译来源:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

科学家开发出需要稀有材料更少的电池 充电更快、寿命更长

科学家开发出需要稀有材料更少的电池 充电更快、寿命更长 研究人员通过开发快速充电功能和使用有机材料增强负极,减少了对稀有非欧洲材料的依赖,从而推动了纳离子电池技术的发展。此外,他们还改进了阴极,创造出一种高能量、快速充电、无钴的材料,这种材料在使用过程中会逐渐发生结构变化,因此寿命更长。资料来源:代尔夫特理工大学这些电极可由有机材料制成,这减少了对并非来自欧洲的稀有材料的依赖,优点在于阴极也得到了改进。代尔夫特的研究人员还改进了另一面,并发表了相关文章。这项研究最近发表在《自然-可持续性》杂志上。《用于钠离子电池的快充高压分层阴极》详细介绍了一种新型正极的开发情况,其设计原理源自他们于 2020 年发表在《科学》杂志上的论文。根据这些设计原则,我们设计了一种材料,它结合了两种可能的最佳结构:高能量密度与快速充电。此外,这种材料在充电和放电过程中会逐渐改变其结构,从而延长其使用寿命。此外,这种材料不含钴,而钴在锂离子阴极中仍然很常见。由于对这些电池材料的了解不断加深,第三个增长基金项目"可持续电池技术"的下一步工作已经准备就绪。在该项目中,除了锂离子电池研究外,还将在全国范围内开展纳离子电池研究。电池研究将进一步扩大,使这项技术能够应用于各国市场。参考文献:DOI: 10.1038/s41893-024-01266-1编译来源:ScitechDaily ... PC版: 手机版:

封面图片

科学家发现新型锂离子导体 可用于强化电动汽车电池

科学家发现新型锂离子导体 可用于强化电动汽车电池 利物浦大学的一个团队开发出了一种新型固态锂离子导体,可以取代电池中的液态电解质,从而提高安全性和效率。图片表示锂离子(蓝色)在结构上移动。资料来源:利物浦大学这种新材料由无毒的地球富集元素组成,具有足够高的锂离子传导性,可以取代目前锂离子电池技术中的液态电解质,提高安全性和能量容量。该大学的跨学科研究团队采用变革性科学方法来设计这种材料,他们在实验室中合成了这种材料,确定了它的结构(原子在空间中的排列),并在电池中进行了演示。这种新材料是极少数能达到足以取代液态电解质的高锂离子电导率的固体材料之一,并且由于其结构而能以一种新的方式工作。这一发现是通过合作计算和实验工作流程实现的,该流程利用人工智能和基于物理学的计算来支持大学化学专家的决策。这种新材料为化学优化提供了一个平台,以进一步提高材料本身的性能,并根据研究提供的新认识来确定其他材料。利物浦大学化学系马特-罗森斯基(Matt Rosseinsky)教授说:"这项研究展示了一种新型功能材料的设计和发现。这种材料的结构改变了人们以往对高性能固态电解质的理解。具体来说,具有多种不同移动离子环境的固体可以表现出很好的性能,而不仅仅是离子环境范围很窄的少数固体。这极大地开拓了进一步发现的化学空间。"最近的报道和媒体报道预示着人工智能工具已被用于寻找潜在的新材料。在这种情况下,人工智能工具是独立工作的,因此很可能会以各种方式重现它们接受过的训练,生成的材料可能与已知材料非常相似。"这篇发现研究论文表明,人工智能和由专家调配的计算机可以解决现实世界材料发现的复杂问题,在这个问题上,我们寻求的是成分和结构上有意义的差异,其对性能的影响要根据理解来评估,我们的颠覆性设计方法为发现这些以及其他依赖离子在固体中快速运动的高性能材料提供了一条新的途径"。这项研究由利物浦大学化学系、材料创新工厂、利弗胡尔姆功能材料设计研究中心、史蒂芬森可再生能源研究所、阿尔伯特-克鲁中心和工程学院的研究人员共同努力完成。并得到了工程与物理科学研究理事会(EPSRC)、勒弗胡尔姆信托基金会(Leverhulme Trust)和法拉第研究所(Faraday Institution)的资助。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

水电池有望5年内取代锂离子电池 不会燃爆、可回收再利用

水电池有望5年内取代锂离子电池 不会燃爆、可回收再利用 研究团队目前已经开发出用于钟表的硬币大小的水基电池原型,以及类似于AA或AAA电池的圆柱形电池。电池通过产生从电池的正极(阴极)到负极(阳极)的电子流来储存能量。当电子向相反方向流动时,它们会消耗能量,电池中的液体是用来在两端之间来回传递电子的。在水电池中,电解液是加了一些盐的水,而不是硫酸或锂盐之类的东西。目前,这种电池的使用寿命与市场上的锂离子电池相当,能量密度约为每公斤75瓦时,约为最新款特斯拉汽车电池的30%,未来通过开发新型纳米材料作为电极还有望再次提高能量密度。此外,这种电池制作工艺简单,所用材料在自然界中含量丰富,价格低廉,毒性更低。科学家称,短期1到3年内有望替代铅酸电池,5到10年内有望取代锂离子电池。 ... PC版: 手机版:

封面图片

中国科学家凭借更安全的锂离子电池荣获2023年欧洲发明家奖

中国科学家凭借更安全的锂离子电池荣获2023年欧洲发明家奖 2023 年 7 月 4 日 –欧洲专利局 (EPO) 今天宣布中国科学家吴凯及其团队荣获 2023 年欧洲发明家奖“非 EPO 国家”类别的获奖者。吴凯和他的团队从 600 多名候选人中脱颖而出团队开发了一种带有顶盖的锂离子电池,可作为降低电池安全风险的屏障。本发明有助于确保配备含有易燃电解质的锂离子(Li-ion)电池的车辆的安全。

封面图片

科学家找出导致电池故障的幽灵般的元凶:软短路

科学家找出导致电池故障的幽灵般的元凶:软短路 阿贡团队的研究重点是全固体电池,其阳极(负极)由锂金属制成。许多人将这种设备视为电池技术的"圣杯"。为什么这么说呢?因为锂金属可以在很小的空间内储存大量电荷。这意味着,与传统的石墨阳极锂离子电池相比,它能使电动汽车的行驶里程更长。然而,锂金属会与传统电池中的液态电解质发生高度反应,这给操作带来了挑战。电解质是在电池的两个电极之间移动被称为离子的带电粒子的材料,可将储存的能量转化为电能。正常工作的电池放电时,离子从阳极通过电解质流向阴极(正极),与此同时,电子从阳极流向外部设备(如手机或电动汽车电机),然后返回阴极。电子流为设备供电。当电池充电时,电子流会反向流动。锂金属的使用往往会破坏这一过程,在充电过程中,锂枝晶会从阳极生长出来并渗入电解液。如果这些枝晶长得足够大并一直延伸到阴极,它们就会在电极之间形成一条永久性的"导线"。最终,电池中的所有电子都会通过这根线从一个电极流向另一个电极,而不会流出电池为设备供电,这一过程也会阻止离子在电极之间流动。"这就是所谓的内部短路,"阿贡博士后、团队首席研究员迈克尔-坎尼汉(Michael Counihan)说,电池发生故障后就不再为设备供电。将锂金属阳极置于固态电池中(换句话说,就是使用固态电解质的电池),有可能减少与枝晶相关的挑战,同时还能保留锂的优点。阿贡团队正在开发一种用于电动汽车电池的新型固体电解质,并注意到了一种不寻常的行为。"当我们在实验室中操作电池时,我们观察到了非常小、非常短暂的电压波动,"Counihan 说。我们决定进行更深入的研究。研究人员对电池进行了数百小时的反复充电和放电,并测量了电压等各种电气参数。研究小组确定,电池正在经历软短路,这是一种微小的暂时性短路。软短路时,枝晶会从阳极向阴极生长。但增长量比永久短路时要小。一些电子留在电池内部,另一些则可能流向外部设备。电极之间的离子流可能会继续流动。所有这些流动都会发生很大的变化。研究小组与阿贡计算专家合作开发了模型,用于预测软短路过程中的离子流和电子流数量。这些模型考虑到了枝晶尺寸和电解质特性等因素。带有软短路的电池可以持续工作数小时、数天甚至数周。但阿贡研究小组发现,随着时间的推移,枝晶的数量通常会增加,最终导致电池失效。Counihan说:"软短路是通向电池永久故障悬崖的第一步。"动态行为研究小组的进一步研究发现,软短路具有非常动态的行为。它们往往在短短的微秒或毫秒内形成、消失和重组。Counihan说:"这对电池研究人员来说是一个重要的启示。在实验室进行典型的电池测试时,研究人员可能每隔一分钟左右才测量一次电压。在这段时间里,电池可能会错过成千上万软短路的形成和死亡。它们就像一个个小幽灵,在不知不觉中破坏着电池。"软短路最常见的原因是发热。当电子流经枝晶时,会产生热量,类似于家用电器电线的发热,热量会迅速融化,尤其是在周围电解液具有隔热性能的情况下。当枝晶与某些电解质发生反应时,软短路就会溶解,阿贡研究小组正在研究的某些固体电解质会在枝晶到达阴极之前将其切断,从而导致内部短路。在对软短路进行广泛研究的过程中,阿贡团队开发并演示了几种检测和分析软短路现象的新方法。例如,一种方法可以量化软短路对电池电流阻力的影响程度。由于不同的电池组件都可能造成这种阻力,因此分离出软短路造成的阻力可以帮助研究人员更好地评估电池的健康状况。这项研究最近发表在《焦耳》(Joule)杂志上,其中包括近 20 种检测和分析技术。其中约三分之一的方法来自该团队最近的研究。研究报告的作者从研究界非正式的、未发表的知识中收集了其他方法。Counihan说:"我们意识到,文献中没有一篇论文使用了其中两种以上的技术。为了让这份清单对研究人员更有用,我们加入了关于每种方法优缺点的信息。由于软短线的动态性很强,因此对于研究人员来说,有很多工具可以使用,以便更好地了解软短线的影响。"研究小组希望为世界各地的研究人员提供有关软短路的见解,为他们的工作提供参考。例如,论文中的技术可以帮助推进阻止枝晶生长的硬固体电解质的设计。Counihan说:"当研究人员了解电池中软短路的动态时,他们就能更好地改进材料,避免这些失效途径。"参考文献:Michael J. Counihan、Kanchan S. Chavan、Pallab Barai、Devon J. Powers、Yuepeng Zhang、Venkat Srinivasan 和 Sanja Tepavcevic 合著的《固态电池研究中动态软短路的幽灵威胁》,2023 年 12 月 6 日,《焦耳》。DOI: 10.1016/j.joule.2023.11.007编译来源:ScitechDaily ... PC版: 手机版:

封面图片

离子“非牛顿流体”:科学家在电池技术方面有了惊人发现

离子“非牛顿流体”:科学家在电池技术方面有了惊人发现 近距离观察,电池电极之间的离子流实际上是一系列原子级的无规律跳跃。在 SLAC 国家加速器实验室的激光实验室中进行的实验表明,当受到电压冲击时,大多数离子会短暂地向后跳回它们之前的位置,然后再继续它们通常的无规律旅行这是它们在某种意义上记得自己刚刚去过的地方的第一个迹象。图片来源:Greg Stewart/SLAC 国家加速器实验室加速器实验室现在,在首次同类研究中,研究人员用激光脉冲照射跳动的离子,给它们施加电压。出乎他们意料的是,大多数离子短暂地逆转了方向,回到了它们之前的位置,然后又开始了它们通常的、更加随机的旅行。这是第一个迹象表明,离子在某种意义上记得它们刚刚去过的地方。来自美国能源部SLAC国家加速器实验室、斯坦福大学、牛津大学和纽卡斯尔大学的研究小组在1月24日出版的《自然》杂志上介绍了他们的发现。离子“非牛顿流体”牛津大学博士后研究员 Andrey D. Poletayev 说:"你可以把离子想象成玉米淀粉和水的混合物。这就是我们经常听到的非牛顿流体,如果我们轻轻推动这种玉米淀粉混合物,它就会像液体一样流动;但如果我们猛击它,它就会变成固体。电池中的离子就像电子玉米淀粉。它们通过向后移动来抵御激光的猛烈震动。"正如波列塔耶夫所说,离子的"模糊记忆"仅持续几十亿分之一秒。但知道它的存在将有助于科学家首次预测行进中的离子下一步会做什么这是发现和开发新材料的一个重要考虑因素。由 SLAC 首席科学家马蒂亚斯-霍夫曼(Matthias C. Hoffmann)制造的激光仪器,用于在固态电池电解质中用电压冲击震荡离子的实验。令研究人员惊讶的是,大多数离子的反应是扭转方向,跳到它们之前的位置,然后再回到它们通常的不规则路径上这是第一个迹象,表明它们在某种意义上记得自己曾经去过的地方。图片来源:Andrey D. Poletayev/牛津大学专为速度设计的电解液在 SLAC 激光实验室进行的实验中,研究人员使用了一种固体电解质的透明薄晶体,这种电解质属于一种被称为β-铝的材料。这些材料是迄今发现的第一批高导电性电解质。它们含有微小的通道,跳跃离子可以在其中快速移动,而且具有比液态电解质更安全的优点。β-铝可用于固态电池、钠硫电池和电化学电池。当离子在β-氧化铝通道中跳跃时,研究人员用长度仅为万亿分之一秒的激光脉冲照射它们,然后测量从电解质中返回的光线。通过改变激光脉冲和测量之间的时间,他们能够精确地确定离子的速度和偏好方向在激光冲击后几兆分之一秒内的变化情况。怪异和不寻常领导这项研究的斯坦福材料与能源科学研究所(SIMES)研究员、SLAC 和斯坦福大学教授亚伦-林登伯格(Aaron Lindenberg)说:"离子跳跃过程中出现了多种奇怪而不寻常的现象。当我们施加一种使电解质摇晃的力时,离子不会像大多数材料那样立即做出反应。离子可能会在那里坐一会儿,突然跳起来,然后又在那里坐一会儿。你可能需要等待一段时间,然后突然发生巨大的位移。因此,这个过程中存在着随机因素,这就给这些实验带来了困难。"研究人员说,在此之前,人们一直认为离子的行进方式是典型的"随机行走":它们推搡、碰撞、跌跌撞撞,就像喝醉酒的人踉踉跄跄地走在人行道上,但最终会以一种在旁观者看来是故意的方式到达某个目的地。或者想想臭鼬向满屋子的人喷出恶臭的喷雾;喷雾中的分子随机地打闹、碰撞,但很快就会到达你的鼻子。波列塔耶夫说:"当谈到跳跃离子时,在原子尺度上这幅图是错误的,但这并不是得出这一结论的人的错。只是长期以来,研究人员一直在用宏观工具研究离子传输,他们无法观察到我们在这项研究中看到的现象。"他说,这里的原子尺度发现"将有助于弥合我们可以在计算机中建模的原子运动与材料宏观性能之间的差距,而这种差距使我们的研究变得如此复杂"。编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人