Nanocryotron“超导开关”可增强探测器观察粒子时的灵敏度

Nanocryotron“超导开关”可增强探测器观察粒子时的灵敏度 为了让科学家们更准确地观察这些粒子的行为,这些微弱的电信号或电流需要通过一种能够将微弱的电闪变为真正的震动的仪器来倍增。电流倍增技术的进步美国能源部(DOE)阿贡国家实验室(Argonne National Laboratory)的科学家们开发出了一种新装置,它可以充当"电流倍增器"。这种装置被称为"Nanocryotron ",它是一种机制的原型,可以将粒子的电信号提升到足够高的水平,从而暂时关闭材料的超导性,本质上是创造了一种开关。阿贡玛丽亚-戈珀特-迈尔研究员之一、该研究的作者托马斯-波拉科维奇说:"我们正在利用一个微小的信号来触发一个电级联。我们将把这些探测器的微小电流导入开关设备,然后利用开关设备切换更大的电流"。提高 Nanocryotron 性能由于涉及到高磁场,要为对撞机实验准备好Nanocryotron还需要更多的工作。如今的粒子探测器可以承受几特斯拉强度的磁场,而这种开关的性能在高磁场中会下降。该研究的另一位作者、阿贡研究生研究助理蒂莫西-德拉赫(Timothy Draher)说:"找到使该设备在更高磁场中工作的方法,是将其纳入实际实验的关键。"为了实现这一目标,研究人员计划改变材料的几何形状,引入缺陷或小孔。这些缺陷将帮助研究人员稳定材料中的小型超导漩涡,这些漩涡的移动会导致超导性的意外中断。平行沟道超导Nanocryotron的假彩色扫描电子显微镜图像。蓝色表示地平面,灰色表示沟槽和纳米线间隙,绿色表示有效的氮化铌沟道,红色表示氮化铌栅到扼流圈的收缩。比例尺为 2 μm。资料来源:阿贡国家实验室制作和潜在应用Nanocryotron是通过电子束光刻技术制作的,这是一种模板技术,使用电子束去除聚合物薄膜,以暴露特定的感兴趣区域。然后使用等离子体离子蚀刻技术对感兴趣的区域进行蚀刻。Draher 说:"我们只是剥去暴露在外的部分,留下我们想要使用的设备。"该研究的另一位作者、阿贡物理学家瓦伦丁-诺沃萨德(Valentine Novosad)认为,这种新装置还可以作为一种电子逻辑电路的基础。"这项工作对于对撞机实验尤为重要,例如将在布鲁克海文国家实验室的电子-离子对撞机上进行的实验。Nanocryotron阿贡杰出研究员、小组负责人Zein-Eddine Meziani说:"在那里,靠近光束的超导纳米线探测器需要对磁场免疫的微电子技术。"根据这项研究撰写的论文"磁场中平行通道Nanocryotron的设计与性能"发表在2023年12月18日出版的《应用物理通讯》上。除德拉赫、蔡恩-埃丁、波拉科维奇和诺沃萨德外,论文作者还包括李毅、约翰-皮尔森、艾伦-迪博斯和肖志立。编译自:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

华盛顿大学科学家发现具有开关功能的突破性超导体 对外界刺激特别敏感

华盛顿大学科学家发现具有开关功能的突破性超导体 对外界刺激特别敏感 随着工业计算需求的增长,满足这些需求所需的硬件的尺寸和能耗也随之增长。超导材料是解决这一难题的可能方案,它可以成倍地降低能耗。试想一下,将一个装满不断运行的服务器的巨型数据中心冷却到近乎绝对零度,就能以惊人的能效进行大规模计算。超导研究取得突破华盛顿大学(University of Washington)和美国能源部阿贡国家实验室(DOE'sArgonne National Laboratory)的物理学家们取得了一项发现,它有助于实现这一更高效的未来。研究人员发现了一种对外界刺激特别敏感的超导材料,它可以随意增强或抑制超导特性。这为高能效可切换超导电路带来了新的机遇。论文发表在《科学进展》(Science Advances)上。超导是一种量子力学物质相,在这种物质中,电流可以零电阻流过材料。这带来了完美的电子传输效率。超导体被用于磁共振成像、粒子加速器、核聚变反应堆甚至悬浮列车等先进技术中最强大的电磁铁中。超导体还可用于量子计算。挑战与创新当今的电子产品使用半导体晶体管来快速开关电流,从而产生信息处理中使用的二进制 1 和 0。由于这些电流必须流经具有有限电阻的材料,因此部分能量会以热量的形式被浪费掉。这就是为什么电脑会随着时间的推移而发热。超导所需的温度很低,通常低于冰点 200华氏度以上,因此这些材料不适合用于手持设备。不过,可以想象它们在工业规模上的用途。由华盛顿大学的舒亚-桑切斯(Shua Sanchez)领导的研究小组研究了一种不寻常的超导材料,它具有非凡的可调性。这种晶体由夹在铁、钴和砷原子超导层之间的铁磁性铕原子平板构成。桑切斯说,在自然界中同时发现铁磁性和超导性是极为罕见的,因为通常一种相位会压倒另一种相位。桑切斯说:"对超导层来说,这实际上是一种非常不舒服的情况,因为它们会被周围铕原子的磁场穿透,这会削弱超导性,导致有限的电阻"。先进的研究技术和成果为了了解这些阶段之间的相互作用,桑切斯在美国领先的 X 射线光源位于阿贡的能源部科学办公室用户设施先进光子源(APS)实习了一年。在那里,他得到了能源部科学研究生研究计划的支持。桑切斯与 APS 4-ID 和 6-ID 光束线的物理学家合作,开发了一个能够探测复杂材料微观细节的综合表征平台。桑切斯和他的合作者综合利用 X 射线技术,证明对晶体施加磁场可以调整铕磁场线的方向,使其与超导层平行。这消除了它们之间的拮抗作用,并导致出现零电阻状态。利用电学测量和 X 射线散射技术,科学家们能够证实他们能够控制材料的行为。"控制超导性的独立参数的性质相当引人入胜,因为人们可以绘制出控制这种效应的完整方法,"论文的共同作者、阿贡大学的菲利普-瑞安说。"这种潜力提出了几个令人着迷的想法,包括为量子设备调节场灵敏度的能力"。研究小组随后对晶体施加应力,结果非常有趣。他们发现,即使不重新调整磁场方向,超导电性也能被提升到足以克服磁性的程度,或者被削弱到磁场重新定向不再能产生零电阻状态的程度。这一附加参数允许控制和定制材料对磁性的敏感性。桑切斯说:"这种材料令人兴奋,因为你可以在多个相之间进行密切竞争,通过施加一个小应力或磁场,你就可以使一个相比另一个相更强,从而开启或关闭超导电性。绝大多数超导体都没有这么容易切换。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

通用原子公司正在研制小型商用粒子加速器

通用原子公司正在研制小型商用粒子加速器 杰斐逊实验室准备新紧凑型加速器腔体的团队成员一个由公共和私营部门研究人员组成的团队利用现成的工业部件,制造出了一个小型粒子加速器原型,这可能会对该技术的商业应用产生重大影响。在这种思想的驱使下,来自美国能源部托马斯-杰斐逊国家加速器设施和能源与国防公司通用原子公司等一系列机构的科学家们开始寻找制造更经济、更紧凑的电子束粒子加速器的方法。得益于两项新的创新,他们取得了成功。获得转让其中第一个突破是加速器腔体的设计方式。在创建原型的过程中,团队成员知道他们想把重点放在超导射频(SRF)粒子加速上,就像杰斐逊实验室连续电子束加速器设备中的系统一样。这种加速器通常内衬一种叫做铌的金属,这种金属在接近绝对零度时具有超导性。正在通用原子公司组装的原型腔体 图/通用原子能公司在新的原型中,研究小组首先使用铌,然后在其上添加了一层铌锡合金。这意味着腔体可以在更高的温度下工作,无需进行如此强烈的超强冷却。接下来,科学家们首先在腔室外部覆盖了一层 2 毫米(0.08 英寸)的覆铜板,然后又覆盖了一层更厚的 5 毫米(0.2 英寸)覆铜板。这样的设计使得腔室能够更容易地通过传导过程将粒子加速过程中产生的热量传递到室外。杰斐逊实验室的科学家 Gianluigi"Gigi"Ciovati 是该项目的负责人,他说:"基本上是通过冷喷和电镀相结合的方法,在空腔外部建造了一个铜热毯。这为内表面产生的热量提供了一条高导热路径,使热量转移到外表面,然后流向低温冷却器"。得益于这种基于传导的设计,该系统可以在 4 开尔文(-452 °F)的温度下运行,是大型系统所需温度的两倍。制造加速器的铜结构 图/通用原子能公司保持冷静这就引出了第二项创新:低温冷却器。在大型粒子加速器中,系统通常使用液氦低温设备进行冷却。这种设备不仅造价昂贵,而且维护费用也很高。在新原型中,研究小组决定使用现成的低温冷却器,这种制冷系统主要用于保持许多核磁共振成像仪中超导磁体的冷却。低温冷却器的"冷头"朝向加速器腔体,结果发现它们能成功地将新的传导腔体冷却到所需的 4 开尔文。Ciovati说:"突破性技术之一是能够利用这些紧凑型商用设备通过传导对空腔进行冷却,而不是使用大型、复杂和昂贵的低温冷却设备。我们正在研究的系统不需要液氦低温设备。"支架车上的 HTC 横截面效果图 图/通用原子能公司测试通用原子公司在一个被称为水平低温恒温器的系统中对新设计进行了测试。通用原子公司磁聚变能源(MFE)部门的科学家德鲁-帕卡德(Drew Packard)说:"首先,将低温恒温器中的空气抽空,然后将空腔冷却到超导阈值以下,并用小射频信号进行激励,以展示电加速梯度。通过诊断,我们证明传导冷却腔体的性能达到了与之前在杰斐逊实验室进行的液氦测试相同的规格。"研究人员说,事实上,原型机产生的峰值表面磁场达到了 50 毫特斯拉,这是迄今为止类似装置产生的最高磁场。研究小组表示,这证明其新型紧凑型加速器可以产生增益为 100 万电子伏特(MeV)的电子,因此具有商业可行性。例如,这种系统可以帮助生产核医学用同位素,或帮助净化环境。"电子束在各种商业应用中都非常有用,"帕卡德说。"这种紧凑型超导加速器技术在环境修复方面具有相当大的潜力,水净化就是一个例子。未经处理的水中可能含有不安全浓度的化学品,如药品或全氟辛烷磺酸,以及有害病原体,如大肠杆菌或沙门氏菌。电子束能非常有效地撕裂复杂分子和有机物,并将其分解成对人类健康和环境威胁较小的基本粒子。"该团队表示,现在将探索如何增强该系统,使其电子束能够更深入地穿透材料,同时还将寻找在其上添加模块的方法,使其性能更加出色。描述该系统的研究成果已发表在《物理评论加速器与光束》杂志上。 ... PC版: 手机版:

封面图片

利用AI构建的工具可以有效替代目前快速重建粒子轨迹的方法

利用AI构建的工具可以有效替代目前快速重建粒子轨迹的方法 在核物理领域,电子设备的日子并不好过。世界上最强大的加速器大型强子对撞机(LHC)会产生大量数据,因此,记录所有数据从来都不是一种选择。因此,处理来自探测器的信号波的系统专门从事......"遗忘"它们在几分之一秒内重建二次粒子的轨迹,并评估刚刚观察到的碰撞是否可以忽略,或者是否值得保存下来以作进一步分析。然而,目前重建粒子轨迹的方法很快就不够用了。粒子跟踪中的人工智能波兰克拉科夫波兰科学院核物理研究所(IFJ PAN)的科学家在《计算机科学》(Computer Science)杂志上发表的研究报告指出,利用人工智能构建的工具可以有效替代目前快速重建粒子轨迹的方法。这些工具可能会在未来两三年内首次亮相,很可能是在支持寻找新物理学的 MUonE 实验中。根据 MUonE 探测器内碰撞时记录的撞击情况重建二次粒子轨迹的原理。后续目标用金色标出,硅探测器层用蓝色标出。资料来源:IFJ PAN粒子探测的复杂性在现代高能物理实验中,从碰撞点偏离的粒子会连续穿过探测器的各个层,并在每一层沉积一点能量。在实践中,这意味着如果探测器由十层组成,而二次粒子穿过所有层,则必须根据十个点重建其路径。这项任务看似简单。"探测器内部通常有一个磁场。带电粒子在磁场中沿着弯曲的线运动,这也是被它们激活的探测器元件(用我们的行话说就是"命中")相互之间的位置关系,"Marcin Kucharczyk 教授(IFJ PAN)解释说,并立即补充道:"在现实中,所谓的探测器占用率,即每个探测器元件的命中数,可能会非常高,这在试图正确重建粒子轨迹时会造成很多问题。特别是,重建相互靠近的轨迹是一个相当大的问题"。旨在发现新物理学的实验将以比以前更高的能量碰撞粒子,这意味着每次碰撞将产生更多的次级粒子。光束的亮度也必须更高,这反过来又会增加单位时间内的碰撞次数。在这种情况下,传统的粒子轨迹重建方法已无法应对。在需要快速识别某些普遍模式的情况下,人工智能就能提供帮助。人工智能作为一种解决方案"我们设计的人工智能是一个深度型神经网络。它包括一个由 20 个神经元组成的输入层、四个各由 1 000 个神经元组成的隐藏层和一个由 8 个神经元组成的输出层。每一层的所有神经元都与相邻层的所有神经元相连。该网络总共有 200 万个配置参数,其值在学习过程中设定,"Milosz Zdybal 博士(IFJ PAN)介绍说。由此编制的深度神经网络使用 40000 次模拟粒子碰撞进行训练,并辅以人工生成的噪声。在测试阶段,只向网络输入碰撞信息。由于这些信息来自计算机模拟,因此肇事粒子的原始轨迹是准确已知的,可以与人工智能提供的重建信息进行比较。在此基础上,人工智能学会了正确地重建粒子轨迹。"在我们的论文中,我们展示了在适当准备的数据库上训练的深度神经网络能够像经典算法一样精确地重建二次粒子轨迹。这一结果对探测技术的发展具有重要意义。虽然训练深度神经网络是一个漫长且需要大量计算的过程,但经过训练的网络却能立即做出反应。"Kucharczyk 教授强调说:"由于它的精确度令人满意,我们可以乐观地考虑在实际碰撞中使用它。"MUonE 实验与未来物理学IFJ PAN 的人工智能最有机会证明自己的实验是 MUonE(μ介子对电子弹性散射)。该实验研究了与μ介子(质量约为电子的 200 倍的粒子)有关的某个物理量的测量值与标准模型(即用于描述基本粒子世界的模型)的预测值之间的有趣差异。在美国费米实验室加速器中心进行的测量显示,μ介子的所谓反常磁矩与标准模型的预测值相差高达 4.2 个标准偏差(简称西格玛)。与此同时,物理学界公认,5 个西格玛以上的显著性(相当于 99.99995% 的确定性)是宣布一项发现的可接受值。如果能够提高标准模型预测的精确度,那么表明新物理学的差异的意义就会大大增加。然而,为了在它的帮助下更好地确定μ介子的反常磁矩,有必要知道被称为强子修正的参数的更精确值。遗憾的是,对这一参数进行数学计算是不可能的。在这一点上,MUonE 实验的作用就显而易见了。在该实验中,科学家们打算研究μ介子对碳或铍等低原子序数原子的电子的散射。研究结果将有助于更精确地确定某些直接取决于强子修正的物理参数。如果一切都按照物理学家的计划进行,通过这种方法确定的强子修正值将使测量μ介子反常磁矩的理论值和测量值之间的差异的可信度增加多达 7 个西格玛迄今为止未知物理的存在可能成为现实。MUonE 实验最早将于明年在欧洲核子研究中心(CERN)的核设施启动,但目标阶段已计划到 2027 年,届时克拉科夫的物理学家们将有机会看到他们创造的人工智能能否完成重建粒子轨迹的工作。在真实实验条件下确认其有效性可能标志着粒子探测技术新时代的开始。编译自:ScitechDaily ... PC版: 手机版:

封面图片

天空中的粒子加速器:NASA的IXPE探索"微类星体"机制

天空中的粒子加速器:NASA的IXPE探索"微类星体"机制 这张海牛星云的合成图捕捉到了 SS 433 喷出的喷流,SS 433 是一个黑洞,它正在吞噬产生它的超新星残余物中的物质。利用 IXPE 航天器数据进行的新研究,特别是通过对微类星体 SS 433 的研究,揭示了黑洞的粒子加速现象。这项工作揭示了喷流内的磁场与它们的运动是一致的,这与之前的理论相矛盾,增强了我们对这种宇宙现象的理解。研究人员利用美国国家航空航天局(NASA)的IXPE(X射线极坐标成像探测器)航天器的数据得出的最新发现,为科学家们提供了粒子加速如何在这种极端环境中发生的新线索。这些观测数据来自一颗"微类星体",这是一个由黑洞从伴星虹吸物质组成的系统。近距离观察 SS 433这颗微类星体(Stephenson and Sanduleak 433,简称 SS 433)位于天鹰座超新星残余物 W50 的中心,距离地球约 1.8 万光年。SS 433强大的喷流扭曲了残余物的形状,并为它赢得了"海牛星云"的绰号,其速度大约是光速的26%,即每秒超过48000英里。SS 433 于 20 世纪 70 年代末被发现,是迄今为止发现的第一颗微类星体。IXPE 的三个机载望远镜测量 X 射线光的一种特殊性质,即偏振,它告诉科学家 X 射线频率下电磁波的组织和排列情况。X 射线偏振有助于研究人员了解宇宙极端区域内发生的物理过程,如黑洞周围的环境,以及粒子如何在这些区域内加速。残余物发出的无线电波呈蓝绿色,而由 IXPE、XMM-牛顿和钱德拉合成的 X 射线则以明亮的蓝紫色和粉白色为主色调,红外线数据则以红色为背景。黑洞以接近光速的速度喷射出两个方向相反的物质射流,扭曲了残余物的形状。喷流在距离黑洞大约 100 光年的地方变得明亮,粒子在喷流内部的冲击下被加速到非常高的能量。IXPE 数据显示,在粒子加速过程中起关键作用的磁场与喷流平行排列这有助于我们了解天体物理喷流是如何将这些粒子加速到高能量的。突破性发现和对未来的影响IXPE 在 2023 年 4 月和 5 月花了 18 天时间研究 SS 433 东叶的一个这样的加速点,高能电子在磁场中螺旋运动产生了辐射这一过程被称为同步辐射。"IXPE数据显示,加速区域附近的磁场指向喷流移动的方向,"美国宇航局位于阿拉巴马州亨茨维尔的马歇尔太空飞行中心的天体物理学家菲利普-卡亚雷特(Philip Kaaret)说,他是IXPE任务的首席研究员,也是SS 433上一篇关于研究结果的新论文的主要作者。他说:"通过 IXPE 看到的高水平极化表明,磁场是有序的,至少有一半的磁场朝同一方向排列。"他说,这一发现出乎意料。研究人员长期以来一直认为,喷流与星际介质(恒星之间的气体和尘埃环境)之间的相互作用很可能会产生冲击,从而导致磁场紊乱。美国国家航空航天局的成像 X 射线极化探测器(IXPE)。资料来源:美国国家航空航天局卡亚雷特说,这些数据提出了一种新的可能性当强大的喷流与星际物质碰撞时,它们内部的磁场可能会被"困住"并被拉伸,从而直接影响它们在粒子加速区域的排列。自 20 世纪 80 年代以来,研究人员就推测 SS 433 的喷流起到了粒子加速器的作用。2018年,墨西哥普埃布拉高空水切伦科夫天文台的观测人员验证了喷流的加速效应,科学家们利用美国宇航局的NuSTAR(核光谱望远镜阵列)和欧洲航天局的XMM-牛顿天文台精确定位了加速区域。随着研究人员继续评估 IXPE 的发现并研究太空中的新目标,其数据还有助于确定相同的机制是否会使各种现象从超新星残留物中流出的黑洞喷流到从爆发的恒星(如耀斑)中喷出的碎片所排出的外流中的磁场保持一致。IXPE 任务的意大利首席研究员保罗-索菲塔(Paolo Soffitta)说:"IXPE 的 X 射线偏振计的成像能力使这一非常精细的测量成为可能,从而在距离中心黑洞 95 光年的喷流小区域内探测到了微弱信号。"这篇新论文详细介绍了 IXPE 在 SS 433 上的观测情况,发表在最新一期的《天体物理学报》上。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

北京大学等机构科研人员发表论文称 LK-99 半悬浮样品不是超导,是铁磁材料

北京大学等机构科研人员发表论文称 LK-99 半悬浮样品不是超导,是铁磁材料 今天,来自北京大学、中国科学院大学等机构的研究人员称,LK-99 表现出的是铁磁性半悬浮现象,不具超导性。 研究者认为,软铁磁足以解释 LK-99 在强垂直磁场中的半悬浮现象。测量结果没有表明样品中存在迈斯纳效应或零电阻,因此实验得到的 LK-99 样品不具超导性。 同时,印度国家实验室也发表论文称,所得 LK-99 样品在室温下不具备超导性。 美国马里兰大学凝聚态物质理论中心(CMTC)也转发了最新的研究,称 LK-99 不是超导体,甚至在室温(或极低温度)下也不是。它只是一种电阻非常高的劣质材料。

封面图片

自然杂志:科学家迄今为止未能证明韩国团队的 LK-99 材料是室温超导体

自然杂志:科学家迄今为止未能证明韩国团队的 LK-99 材料是室温超导体 一个韩国团队声称发现了一种在室温和环境压力下工作的超导体,这一消息引起了广泛关注,并促使科学家和业余爱好者进行了大量的复现工作。但最初在实验和理论上重现这一值得关注的结果的努力却未能成功,研究人员仍然深感怀疑。 由首尔初创公司量子能源研究中心的 Sukbae Lee 和 Ji-Hoon Kim 领导的研究小组在 7 月 1 日 25 日发表的预印本中表示,一种由铜、铅、磷和氧组成的化合物,被称为LK- 99,在环境压力和温度高于 127 °C(400 开尔文)时是超导体。研究小组声称,样品显示出超导性的两个关键迹象:零电阻和迈斯纳效应,其中材料排出磁场,导致样品悬浮在磁铁上方。以前的努力仅在极低的温度或极高的压力下在某些材料中实现了超导。尚未证实任何材料在环境条件下是超导体。 首次复现LK-99的尝试在最近几天的报道中并没有改善该材料的前景。这些研究都没有直接证据表明该材料具有超导性。(韩国团队未回应《自然》杂志的置评请求。) 印度新德里国家物理实验室和北京北航大学的两个独立实验团队分别报告说,他们成功合成了LK-99,但没有观察到超导性的迹象。中国南京东南大学的研究人员进行的第三个实验在LK-99中没有发现迈斯纳效应,但在-163°C(110开尔文)时测得LK-99的电阻接近零这远低于常温,但对于超导体来说却很高。 理论学家也加入了争论。几个理论研究使用了一种名为密度泛函理论(DFT)的计算技术来计算LK-99的电子结构。DFT计算表明LK-99可能具有有趣的电子特性,在其他材料中,这些特性与铁磁性和超导性等行为有关。但是没有一项研究发现LK-99在常规条件下是超导体。 复现尝试的有限成功并没有平息网上的猜测。尽管许多材料(包括石墨烯、青蛙和钳子)都可以表现出类似的磁性行为,但未经证实的样本视频(据称是由于超导性而悬浮)已作为“证据”流传开来。 (nature)

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人