解码恒星起源:韦伯对NGC 604的红外洞察力

解码恒星起源:韦伯对NGC 604的红外洞察力 这张来自 NASA 詹姆斯-韦伯太空望远镜的 NIRCam(近红外照相机)的恒星形成区 NGC 604 的图像显示了来自明亮、炽热的年轻恒星的恒星风是如何在周围的气体和尘埃中形成空洞的。图片来源:NASA、ESA、CSA、STScI以恒星形成区 NGC 604 为例。这个区域位于 273 万光年外的三角座星系附近,与我们熟悉的银河系中的猎户座星云等恒星诞生区相似,但它的范围要大得多,而且包含了更多新近形成的恒星。这种区域是更遥远的"星爆"星系的小规模版本,它们经历了极高的恒星形成速度。这张来自美国宇航局詹姆斯-韦伯太空望远镜的中红外成像仪(MIRI)拍摄的恒星形成区 NGC 604 的图像,显示了大量较冷气体和尘埃云在中红外波段是如何发光的。该区域是恒星形成的温床,是 200 多颗最热、质量最大的恒星的家园,它们都处于生命的早期阶段。图片来源:NASA、ESA、CSA、STScI恒星的形成及其所处的混沌环境是宇宙研究中研究得最透彻的领域之一,但同时也是最神秘的领域之一。美国国家航空航天局(NASA)的詹姆斯-韦伯太空望远镜(James Webb Space Telescope)正在以前所未有的方式揭开这些复杂过程的神秘面纱。韦伯望远镜的近红外相机(NIRCam)和中红外光谱仪(MIRI)拍摄的两幅新图像展示了恒星形成区NGC 604,它位于三角座星系(M33)中,距离地球273万光年。在这些图像中,洞穴般的气泡和伸展的气体细丝刻画出了比过去看到的更详细、更完整的恒星诞生过程。在 NGC 604 的尘封气体包层中,隐藏着 200 多颗最炽热、质量最大的恒星,它们都处于生命的早期阶段。这些恒星分为 B 型和 O 型,后者的质量可能是太阳的 100 多倍。在附近的宇宙中发现如此密集的恒星是非常罕见的。事实上,在我们的银河系中也没有类似的区域。大质量恒星的集中,加上相对较近的距离,意味着 NGC 604 为天文学家提供了一个在这些天体生命早期对其进行研究的机会。这段视频比较了哈勃太空望远镜的 WFPC2(宽视场和行星相机 2)在可见光下、詹姆斯-韦伯太空望远镜的 NIRCam(近红外相机)在近红外下以及韦伯的 MIRI(中红外光谱仪)在中红外下拍摄的恒星形成区 NGC 604 的图像。资料来源:NASA、ESA、CSA、Alyssa Pagan(STScI)在韦伯的近红外 NIRCam 图像(图像位于本页顶部)中,最明显的特征是呈鲜红色的卷须状和团块状发射物,它们从看起来像空地或星云中的大气泡的区域延伸出来。来自最亮、最热的年轻恒星的恒星风刻画出了这些空洞,同时紫外线辐射使周围的气体电离。这些电离氢呈现出白色和蓝色的幽光。韦伯近红外图像中明亮的橙色条纹标志着碳基分子的存在,这种分子被称为多环芳烃(PAHs)。这种物质在星际介质以及恒星和行星的形成过程中发挥着重要作用,但其来源却是一个谜。当你远离眼前的尘埃空地时,更深的红色代表分子氢。这种较冷的气体是恒星形成的主要环境。这幅由韦伯的 NIRCam(近红外相机)拍摄的 NGC 604 图像显示了罗盘箭头、比例尺和供参考的色键。向北和向东的罗盘箭头显示了图像在天空中的方位。刻度条标注的单位是光年,即光在一个地球年所走过的距离。(光传播的距离等于刻度条的长度需要 3 年)。一光年约等于 5.88 万亿英里或 9.46 万亿公里。这张图片显示的是不可见的近红外光波长,这些波长已被转换成可见光的颜色。色键显示了收集这些光线时使用了哪些 NIRCam 滤光片。每个滤光片名称的颜色就是用来表示通过该滤光片的红外光的可见光颜色。资料来源:NASA、ESA、CSA、STScI韦伯望远镜精湛的分辨率还让我们了解到一些以前看起来与主星云无关的特征。例如,在韦伯的图像中,有两颗明亮、年轻的恒星在中央星云上方的尘埃中挖出了洞,通过弥漫的红色气体连接在一起。在美国国家航空航天局哈勃太空望远镜的可见光成像中,这两颗恒星看起来是独立的斑点。韦伯用中红外波段观测到的景象也从一个新的角度展示了这一区域丰富多彩的动态活动。在 NGC 604 的 MIRI 视图中(页首第二张图片),恒星的数量明显较少。这是因为热恒星在这些波长下发出的光要少得多,而较大的较冷气体和尘埃云则会发光。这张图片中看到的一些恒星属于周围的星系,它们是红超巨星这些恒星温度低,但体积非常大,直径是太阳的数百倍。此外,在 NIRCam 图像中出现的一些背景星系也逐渐消失。在 MIRI 图像中,蓝色的物质卷须表示多环芳香烃的存在。据估计,NGC 604 的年龄约为 350 万年。发光气体云的直径约为 1300 光年。编译自:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

韦伯太空望远镜揭示关键恒星形成区N79的细节

韦伯太空望远镜揭示关键恒星形成区N79的细节 詹姆斯-韦伯太空望远镜(James Webb Space Telescope)捕捉到了位于大麦哲伦星云中一个充满活力的恒星形成区N79的图像,凸显了它作为年轻版狼蛛星云的潜力。这次观测通过中红外光揭示了该区域发光的气体和尘埃,为了解早期宇宙的恒星形成过程和化学成分提供了宝贵的信息。图片来源:ESA/Webb、NASA & CSA、O. Nayak、M. MeixnerN79是一个巨大的恒星形成复合体,位于一般未被探索的LMC西南区域,跨度大约1630光年。N79通常被认为是年轻版的30 Doradus(又称塔兰图拉星云),后者是韦伯最近的另一个目标。研究表明,在过去的 50 万年里,N79 的恒星形成效率要比30 Doradus高出 2 倍。这幅特殊的图像以三个巨型分子云团中的一个为中心,被称为 N79 South(简称 S1)。围绕着这个明亮物体的明显"星芒"图案是一系列衍射尖峰。所有像韦伯望远镜这样使用镜面收集光线的望远镜,都会因为望远镜的设计而产生这种人工痕迹。在韦伯望远镜中,由于韦伯望远镜的 18 个主镜部分呈六边形对称,因此出现了六个最大的衍射尖峰。只有在非常明亮、紧凑的天体周围才会出现这样的图案,因为所有的光线都来自同一个地方。大多数星系,即使在我们眼中看起来非常小,也比单颗恒星更暗、更分散,因此不会出现这种图案。在中红外成像仪捕捉到的较长的光波长下,韦伯拍摄到的 N79 星展现了该区域发光的气体和尘埃。这是因为中红外光能够揭示云层深处的情况(而较短波长的光会被星云中的尘粒吸收或散射)。一些仍然嵌入的原恒星也出现在这个区域。天文学家之所以对这样的恒星形成区域感兴趣,是因为它们的化学成分与宇宙只有几十亿年历史、恒星形成达到顶峰时观测到的巨大恒星形成区域的化学成分相似。银河系中的恒星形成区并没有像N79那样以如此迅猛的速度产生恒星,它们的化学成分也不尽相同。韦伯望远镜现在为天文学家提供了一个机会,将对 N79 星区恒星形成的观测结果与望远镜对宇宙早期遥远星系的深入观测结果进行对比。对N79的这些观测是韦伯计划的一部分,该计划正在研究形成中恒星的周星盘和包层在不同质量范围和不同演化阶段的演化情况。韦伯的灵敏度将使科学家们能够首次探测到质量与太阳相近的恒星周围的行星形成尘埃盘,这些恒星位于 LMC 的距离上。该图像包括蓝色的 7.7 微米光、青色的 10 微米光、黄色的 15 微米光和红色的 21 微米光(分别为 770W、1000W、1500W 和 2100W 滤光片)。 ... PC版: 手机版:

封面图片

韦伯望远镜揭示蛇夫座星云中的壮观恒星喷流

韦伯望远镜揭示蛇夫座星云中的壮观恒星喷流 在美国宇航局詹姆斯-韦伯太空望远镜上的近红外相机(NIRCam)拍摄的这幅蛇夫座星云图像中,天文学家发现在一个小区域内(左上角)有一组排列整齐的原恒星外流。在韦伯望远镜的图像中,这些喷流呈现出红色的明亮块状条纹,这是喷流撞击周围气体和尘埃产生的冲击波。资料来源:NASA、ESA、CSA、STScI、Klaus Pontoppidan(NASA-JPL)、Joel Green(STScI)在星云的一个区域,韦伯已经将以前看似模糊的球状物解析成了清晰的原恒星外流。更让研究人员惊讶的是,这些外流被看成是排列整齐的,这表明我们在这一区域的历史上捕捉到了一个独特的时刻,并提供了恒星诞生的基本信息。在韦伯太空望远镜的新图像中首次进行了同类检测美国国家航空航天局詹姆斯-韦伯太空望远镜的近红外相机(NIRCam)首次捕捉到了天文学家一直希望直接拍摄的现象。在这幅令人惊叹的蛇夫座星云图像中,这一发现位于这个年轻的、附近恒星形成区的北部区域(见左上方)。天文学家发现了一组有趣的原恒星外流,它们是新生恒星喷出的气体射流与附近的气体和尘埃高速碰撞后形成的。通常情况下,这些天体在一个区域内会有不同的方向。然而,在这里,它们朝着同一个方向倾斜,程度相同,就像暴风雨中倾泻而下的雨夹雪。韦伯望远镜精湛的空间分辨率和近红外波长的灵敏度使得发现这些排列整齐的天体成为可能,这为了解恒星是如何诞生的基本原理提供了信息。位于加利福尼亚州帕萨迪纳市的美国宇航局喷气推进实验室的首席研究员克劳斯-庞托皮丹(Klaus Pontoppidan)说:"天文学家长期以来一直认为,当云层坍缩形成恒星时,恒星会趋向于朝同一方向旋转。然而,这种现象以前从未如此直接地出现过。这些排列整齐、拉长的结构是恒星诞生的基本方式的历史记录"。这张来自美国宇航局詹姆斯-韦伯太空望远镜的图片显示了蛇夫座星云的一部分,天文学家在这里发现了一组排列整齐的原恒星外流。这些喷流以红色的明亮块状条纹为标志,这是喷流撞击周围气体和尘埃产生的冲击波。在这里,红色代表分子氢和一氧化碳的存在。资料来源:NASA、ESA、CSA、STScI、Klaus Pontoppidan(NASA-JPL)、Joel Green(STScI)恒星形成的机理那么,恒星喷流的排列与恒星的旋转有什么关系呢?当星际气体云撞向自身形成恒星时,它的旋转速度会更快。气体继续向内移动的唯一方法就是去除部分自旋(称为角动量)。年轻恒星周围会形成一个物质盘,将物质向下输送,就像排水口周围的漩涡一样。内盘中的漩涡磁场将部分物质发射成双子喷流,以垂直于物质盘的相反方向向外喷射。在韦伯望远镜的图像中,这些喷流以红色的明亮块状条纹为标志,这是喷流撞击周围气体和尘埃产生的冲击波。在这里,红色代表分子氢和一氧化碳的存在。这幅图像显示的是美国宇航局詹姆斯-韦伯太空望远镜的近红外相机(NIRCam)看到的蛇夫座星云中心。在这幅图像中,整个区域中不同色调的丝状物和缕状物代表了云中仍在形成的原恒星反射的星光。在某些区域,反射光前方有尘埃,在这里呈现出橙色的漫射阴影。资料来源:NASA、ESA、CSA、STScI、Klaus Pontoppidan(NASA-JPL)、Joel Green(STScI)增强型成像技术韦伯望远镜的主要作者、巴尔的摩太空望远镜科学研究所的乔尔-格林(Joel Green)说:"蛇夫座星云的这一区域蛇夫座北星云只有在韦伯望远镜上才能清晰地看到。我们现在能够捕捉到这些极其年轻的恒星和它们的外流,其中一些恒星以前只是以圆球的形式出现,或者由于它们周围厚厚的尘埃而在光学波长下完全看不到。"天文学家说,在年轻恒星生命的这一时期,有几种力量可能会改变外流的方向。其中一种方式是双星相互旋转,摆动方向,随着时间的推移扭曲外流的方向。这幅由韦伯近红外相机(NIRCam)拍摄的蛇夫座星云图像显示了罗盘箭头、比例尺和供参考的色键。向北和向东的罗盘箭头显示了图像在天空中的方位。请注意,相对于地面地图上的方向箭头(从上往下看),天空中的北方和东方之间的关系(从下往上看)是颠倒的。刻度条标注的单位是光年,也就是光在一个地球年所走过的距离。一光年约等于 5.88 万亿英里或 9.46 万亿公里。这张图片显示的是不可见的近红外光波长,这些波长已被转换成可见光的颜色。色键显示了在收集光线时使用了哪些 NIRCam 滤光片。每个滤光片名称的颜色就是用来表示通过该滤光片的红外光的可见光颜色。资料来源:NASA、ESA、CSA、STScI、Klaus Pontoppidan(NASA-JPL)、Joel Green(STScI)蛇夫座星云的恒星蛇夫座星云距离地球 1300 光年,只有一两百万年的历史,从宇宙的角度来看非常年轻。它也是一个新形成的恒星(约 10 万年)特别密集的星团的所在地,在这张图片的中心可以看到。其中一些恒星的质量最终将达到我们太阳的质量。格林说:"韦伯望远镜是一台年轻恒星天体探测机器。在这个领域中,我们可以捕捉到每一颗年轻恒星的路标,直至质量最低的恒星。我们现在看到的是一幅非常完整的画面。"在这张照片的整个区域中,不同色调的丝状物和缕状物代表了云中仍在形成的原恒星反射的星光。在某些区域,反射光前方有灰尘,在这里呈现出橙色的漫射阴影。2020 年,美国宇航局哈勃太空望远镜的数据显示,一颗恒星的行星形成盘发生了扇动或移动,"蝙蝠阴影"由此得名。在韦伯图像的中心位置可以看到这一特征。未来研究之路新图像和偶然发现的对齐天体实际上只是这项科学计划的第一步。研究小组现在将利用韦伯望远镜的近红外摄谱仪(NIRSpec)来研究云的化学构成。天文学家们对确定挥发性化学物质如何在恒星和行星形成过程中存活下来很感兴趣。挥发性物质是在相对较低的温度下升华或从固态直接转变为气态的化合物,包括水和一氧化碳。然后,他们将把他们的发现与在类似类型恒星的原行星盘中发现的数量进行比较。"从最基本的形式来看,我们都是由来自这些挥发物的物质构成的。地球上的大部分水起源于数十亿年前太阳还是一颗幼年原恒星的时候,"庞托皮丹说。"观察原恒星在形成原行星盘之前这些关键化合物的丰度,有助于我们了解太阳系形成时的独特环境。"这些观测是第 1611 号一般观测者计划的一部分。研究小组的初步结果已被接受在《天体物理学报》上发表。詹姆斯-韦伯太空望远镜(JWST)是一个大型天基观测站,将于 2021 年 12 月发射。它是哈勃太空望远镜的科学继承者。JWST 配备了一个 6.5 米长的主镜,专门观测红外光谱中的宇宙,使其能够比以往任何时候都能回溯到更久远的过去。这种能力使望远镜能够研究最初星系的形成、恒星和行星系统的演化以及遥远系外行星的大气层。JWST 位于第二拉格朗日点(L2),距离地球约 150 万公里,旨在提供前所未有的分辨率和灵敏度,为探索宇宙打开新的窗口。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

韦伯太空望远镜捕捉到双星形成的“指纹”图案

韦伯太空望远镜捕捉到双星形成的“指纹”图案 美国国家航空航天局(NASA)发布了由韦伯太空望远镜拍摄到的双星在太空中形成“指纹”的图像。这个罕见的宇宙景象由恒星及其伴星产生的尘埃环组成。 这对双星组合距离地球5000多光年,统称为Wolf-Rayet 140。当Wolf-Rayet 140中的两颗恒星靠近时,它们的恒星风会相撞压缩气体并形成一个尘埃环。这两颗恒星的运行轨道大约每8年聚集一次,便产生一层尘埃环。这个像“指纹”图案的宇宙景象由至少17个同心尘埃环组成。 来自:雷锋 频道:@kejiqu 群组:@kejiquchat 投稿:@kejiqubot

封面图片

韦伯望远镜展示距离银河系较近的19个螺旋星系

韦伯望远镜展示距离银河系较近的19个螺旋星系 让天文学家惊讶的是,图像还显示了气体和尘埃中的大型球形外壳,这些外壳可能是由爆炸的恒星产生的。牛津大学天文学家托马斯·威廉姆斯表示,这些数据很重要,因为它们为我们提供了关于恒星形成最早阶段的新视角。公开资料显示,韦伯太空望远镜造价100亿美元,是美国航天局迄今建造的最大、功能最强的空间望远镜。其主镜直径6.5米,由18片巨大六边形镜片构成;配有5层可展开的遮阳板。韦伯太空望远镜2021年12月25日从法属圭亚那库鲁航天中心发射升空,一个月后进入围绕日地系统第二拉格朗日点的运行轨道,距离地球约150万千米。 ... PC版: 手机版:

封面图片

NASA 韦伯望远镜发布火星红外照片

NASA 韦伯望远镜发布火星红外照片 詹姆斯·韦布空间望远镜近日发布了其拍摄的首张火星红外图像,捕获了整颗行星的大气数据,这将帮助天文学家识别以前仪器无法识别的现象和气体,更好地了解火星的大气层。 韦布发布的图像用两种不同的红外波长显示了火星东半球的图像。波长较短的部分是火星反射太阳光得到的结果,显示了可见光图像中常见的行星表面特征;波长较长的部分则显示了火星表面和大气散发的热量,以及大气中二氧化碳浓度的信息。 左边:目前的火星地图。右上:同一区域的红外图像,显示了火山口和灰尘层等表面特征。右下:显示火星温度的红外图像。 来自:雷锋 频道:@kejiqu 群组:@kejiquchat 投稿:@kejiqubot

封面图片

韦伯望远镜首次直接拍摄到系外行星的图像

韦伯望远镜首次直接拍摄到系外行星的图像 韦伯太空望远镜首次直接拍摄到一颗系外行星的图像。这颗被命名为 HIP 65426 b 的系外行星是一颗不宜居住的气态巨行星。它的质量是木星的 6 到 12 倍,年龄在 1500 万年到 2000 万年之间。天文学家 2017 年利用欧洲南方天文台在智利的甚大望远镜发现了这颗行星。韦伯望远镜如今拍摄到这颗行星的更多细节。由于地球大气散发的红外辐射干扰,这些细节无法从地面拍摄到。拍摄 HIP 65426 b 直接图像的挑战之处在于,它比所环绕的恒星暗得多,在近红外波段辐射亮度不足所环绕的恒星的万分之一,在中红外波段辐射亮度不足千分之一。望远镜的近红外相机(NIRCam)和中红外仪器(MIRI)均配备了日冕仪。这种设备可以遮挡恒星光芒,使望远镜得以拍摄到行星。 这张图像显示了系外行星HIP 65426 b在不同的红外波段,如詹姆斯·韦伯太空望远镜所见:紫色显示NIRCam仪器在3.00微米处的视图,蓝色显示NIRCam仪器4.44微米处的视图,黄色显示MIRI仪器11.4微米处的视图,红色显示了MIRI仪器15.5微米处的MIRI仪器视图。由于不同的韦伯仪器捕获光的方式,这些图像看起来不同。每台仪器中都有一组被称为日冕仪的遮罩,它可以挡住主星的光,以便可以看到这颗行星。每张图像中的小白星标记了主恒星HIP 65426的位置,该位置已通过日冕图和图像处理减去。NIRCam图像中的条形是望远镜光学系统的伪影,而不是场景中的物体。 来源: 来自:雷锋 频道:@kejiqu 群组:@kejiquchat 投稿:@kejiqubot

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人