新研究揭示了星系簇和星系团之间比以前所理解的更深的区别

新研究揭示了星系簇和星系团之间比以前所理解的更深的区别 天文学家们普遍认为,星系团和星系簇的区别主要在于它们所包含的星系数量星系团中的星系数量较少,而星系簇中的星系数量较多。塔尔图大学塔尔图天文台(Tartu Observatory of the University of Tartu)的天文学家们在马雷特-艾纳斯托(Maret Einasto)的带领下决定对此进行研究,并发现了星系群和星系团之间的更多差异。宇宙的结构可以被描述成一个巨大的网络,一个宇宙网,由单个星系链(丝状)和小星系群连接着丰富的星系群和星系团,这些星系群和星系团可以包含成千上万个星系。星系系统之间有巨大的空隙,空隙中几乎看不到任何物质(星系和气体)。星系团和星系簇又可以形成更大的星系系统,称为超星系团。研究目标和方法在研究中,塔尔图天文学家使用了有关星系团、星系团中最亮的星系(即所谓的主星系)及其周围环境的数据。研究的目的是将这些数据结合起来,观察能否为不同大小的星系群的可能分类提供新的信息。研究结果表明,星系群和星系团可以分为两类,它们的性质截然不同。在富星系团和贫星系团中,影响星系团和星系簇中主要星系形成和演化的物理过程是不同的。在这项工作中,研究人员用两种不同的方式描述了星系团的环境。首先,他们用一般密度场来描述宇宙网,超星系团是最大的高密度区域,而空洞则是低密度区域。其次,他们计算了每个星系群与最近的丝轴的距离。这个距离显示了星系群是在丝状轴中,还是离丝状轴很近或很远。每个彩色圆圈代表一个星系群或星系团。最富集的星系团用红色标出;它们是大力神超星系团和狮子座超星系团中最富集的星系团。侧面板显示的是这些星系团中最亮的星系,这些星系来自斯隆数字数据库。黄色、绿色和蓝色圆圈代表从最亮到最暗的星系团。资料来源:Maret Einasto研究人员将星系群的主星系分为没有活跃恒星形成的星系(这些星系主要为红色)和目前恒星形成活跃的星系(年轻恒星使这些星系呈现蓝色)。不过,他们也在星系群的主星系中发现了红色恒星形成星系。亮度、位置和属性通过比较不同光度(或丰富度)星团中主星系的性质,发现星团主要分为两类高光度星团和星团,其中几乎所有的主星系都是不形成恒星的红色星系;低光度贫乏星团,其中的主星系除了不形成恒星的星系外,还可能有形成恒星的蓝色或红色星系。星系群和星系团之间的差异并不局限于光度每个样本都可以根据一个特征分成两个。此外,研究还发现,高亮度星系团和星系簇都位于高密度区域的丝状结构中。所有最亮和最丰富的星系团都位于超星系团的丝状结构中。与此相反,低亮度星系团和单个星系在宇宙网中随处可见,包括在低密度区域在空隙中,位于稀疏的丝状结构中,甚至远离丝状结构。有趣的是,在超星系团中,具有相同数量成员的低亮度星系团的亮度要比超星系团之外的星系团高得多。研究表明,富星系群中不再有恒星形成的主星系与有活跃恒星形成的主星系的星系群的动力学特性也有所不同。在前者中,主星系大多位于星系群或星团中心,而恒星形成中的主星系可能距离星系群中心相当遥远。天文学家发现,以往研究中已知的主星系恒星速度散度与星系群速度散度之间的关系,在星团非常丰富的情况下并不成立,尤其是在主星系不形成恒星的星团中。描述宇宙结构的特性及其如何形成和演化是宇宙学的基本任务之一。这些结果扩展了我们对星系团和星系簇及其主星系在宇宙网络中的形成和演化的认识。富星系团只能在物质总密度足够高、恒星形成所需的气体充足的区域形成。在这样的区域里,富星系团可以被其他(同样富裕的)星系团和星系群联合起来。在低密度区域(目前的空白区域),只能形成相当贫乏的星团,它们之间的距离相当远,因此很少有合并的情况。研究结果还表明,在富星系群和贫星系群中,影响星系群和星团中主星系形成和演化的物理过程是不同的。单个星系和小星系团中主星系的演化主要受其暗物质晕内部和周围过程的影响;其他星系和更遥远环境(星系团合并等)的影响主要在富星系团中很重要。我们的研究还强调了星系超星系团作为星系和星系系统形成和演化的独特环境的重要性。在研究星系和星系群方面,工作组下一步将利用新的观测数据,包括非常暗的星系数据。塔尔图天文台参与了许多这样的观测计划。编译自:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

哈勃太空望远镜拍摄的照片展示室女座星系团中的矮星系IC 776

哈勃太空望远镜拍摄的照片展示室女座星系团中的矮星系IC 776 IC 776 是室女座星系团中的一个矮星系,由于其发射的 X 射线而成为人们深入研究的对象,它提供了关于影响星系演化和宇宙学的过程的洞察力。本周"哈勃每周图片"的主角是矮星系 IC 776。这个由新旧恒星组成的漩涡星系位于室女座实际上是室女座星系团距离地球 1 亿光年。虽然它是一个矮星系,但也被归类为 SAB 型或"弱棒状"螺旋星系,一项研究将其命名为形态学上的"复杂案例"。哈勃望远镜拍摄的这一高度精细的画面很好地展示了这种复杂性。IC 776 有一个粗糙、受干扰的圆盘,但看起来是围绕核心旋转的,还有弧形的恒星形成区。这张照片来自一个专门研究室女座星系团中矮星系的观测项目,目的是寻找这些星系中的 X 射线源。X射线通常是由吸积盘发出的,在吸积盘中,被引力吸入一个紧凑天体的物质碰撞在一起,形成一个发热发光的圆盘。紧凑天体可能是双星对中的白矮星或中子星,从伴星中窃取物质,也可能是星系中心的超大质量黑洞,吞噬着周围的一切。像 IC 776 这样的矮星系在室女座星系团中穿行时,会受到来自星系间气体的压力,这种压力既能刺激恒星的形成,又能为星系的中心黑洞提供能量。这会产生高能吸积盘,其温度足以发出X射线。虽然哈勃无法看到 X 射线,但它可以与NASA 的钱德拉等 X 射线望远镜协调,利用可见光高分辨率地揭示这种辐射的来源。矮星系被认为对我们了解宇宙学和星系演化非常重要。与天文学的许多领域一样,在整个电磁频谱范围内对这些星系进行研究的能力对它们的研究至关重要。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

哈勃揭示NGC 2005星团 星系合并的古老见证

哈勃揭示NGC 2005星团 星系合并的古老见证 这张哈勃太空望远镜拍摄的照片显示的是球状星团 NGC 2005。它距离大麦哲伦云中心约 750 光年,距离地球约 162000 光年。这个星团是古老宇宙结构的一个范例,其中可能蕴藏着数百万颗古老的恒星,它们提供了类似于地球化石的洞察力,揭示了古老恒星的特征。图片来源:ESA/哈勃和 NASA, F. Niederhofer, L. GirardiNGC 2005距离大麦哲伦云(LMC)中心约750光年,大麦哲伦云是银河系最大的卫星星系,它本身距离地球约162000光年。球状星团是由数万或数百万颗恒星组成的密集星团。它们的密度意味着它们受到紧密的引力束缚,因此非常稳定。这种稳定性造就了它们的寿命:球状星团的年龄可达数十亿年,因此通常由非常古老的恒星组成。因此,研究太空中的球状星团有点像研究地球上的化石:化石让人了解远古动植物的特征,而球状星团则让人了解远古恒星的特征。目前的星系演化理论预测星系会相互合并。人们普遍认为,我们在现代宇宙中观测到的相对较大的星系是由较小的星系合并而成的。如果这一观点是正确的,那么天文学家就会发现有证据表明,附近星系中最古老的恒星起源于不同的星系环境。众所周知,球状星团中含有远古恒星,而且它们非常稳定,因此是检验这一假说的绝佳实验室。NGC 2005就是这样一个球状星团,它的存在为星系通过合并而演化的理论提供了证据。事实上,NGC 2005中恒星的化学成分与它周围的LMC中的恒星截然不同。这表明,LMC在其历史的某个时期曾与另一个星系发生过合并。另一个星系早已合并或消散,但NGC 2005却作为一个古老的见证者留在了这里。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

哈勃最新观测结果揭示银河碰撞是如何引发恒星形成的

哈勃最新观测结果揭示银河碰撞是如何引发恒星形成的 从这张哈勃太空望远镜拍摄的图片中可以看到,AM 1054-325 星系在邻近星系的引力作用下,从正常的薄饼状螺旋形状扭曲成了 S 形。这样做的一个后果是,新生的恒星群沿着一条拉长的潮汐尾迹形成,长达数千光年,就像一串珍珠。宾夕法尼亚州立大学的一位天文学家领导的一项新研究锁定了其中的 12 条潮汐尾迹,发现了 425 个星团,每个星团都有多达一百万颗新生恒星。图片来源:NASA、ESA、STScI、Jayanne English(马尼托巴大学)在一项新的研究中,宾夕法尼亚州立大学研究人员领导的研究小组利用美国国家航空航天局的哈勃太空望远镜对12个星系进行了观测,这些星系拥有长长的、像蝌蚪一样的潮汐尾迹,尾部的气体、尘埃和恒星都是在这种碰撞中产生的。研究小组在这些潮汐尾迹发现了 425 个新生恒星星团,每个星团包含多达 100 万颗新生恒星。宾夕法尼亚州立大学天文学和天体物理学教授、研究小组成员简-查尔顿(Jane Charlton)说:"星系合并时,气体云会发生碰撞和坍缩,从而形成一个高压环境,恒星就可能在这个环境中形成。这些合并的内部已经得到了很好的研究,但对于这些合并产生的碎片(如潮汐尾迹)中可能形成恒星的情况却知之甚少"。当星系相互作用时,引力潮汐力会拉出长长的气体和尘埃流,相互作用的星系之间的引力拉锯战把星系的旋臂拉得像太妃糖的形状一样,沿旋臂尾部的星团看起来就像一串珍珠。天线星系和老鼠星系就是两个具有这种潮汐尾迹的著名星系,它们都有狭长的手指状突起。在新的研究中,研究小组综合利用了新的观测数据和哈勃的档案数据,确定了 12 个潮汐尾迹内星团的年龄和质量。然后,他们利用绕地球运行的两台紫外线太空望远镜的数据确定了恒星形成的速度,其中一台搭载在现已退役的银河进化探测器(Galex)上,另一台搭载在尼尔-盖尔瑞斯-斯威夫特天文台(Neil Gehrels Swift Observatory)上,该天文台的任务运行中心位于宾夕法尼亚州立大学。研究小组发现,许多潮汐尾迹星团都非常年轻只有1000万年的历史。此外,这些星团似乎是以相同的速度沿着绵延数千光年的整个尾部形成的。他们在《皇家天文学会月刊》(Monthly Notices of the Royal Astronomical Society)上发表了他们的研究成果。"在尾部看到大量年轻天体令人惊讶。这告诉了我们很多关于星团形成效率的信息,"第一作者、弗吉尼亚州阿什兰市伦道夫-麦肯学院讲师兼基布尔天文台主任迈克尔-罗德鲁克说,他在研究时还是宾夕法尼亚州立大学的一名研究生。"有了潮汐尾尾迹,就会有条件建立起新一代恒星,否则这些恒星可能不会存在"。在合并之前,这些星系中含有大量的分子氢尘埃云,它们可能一直处于惰性状态。在碰撞过程中,这些云相互挤压和碰撞,氢被压缩到一定程度,从而引发了一场恒星诞生的风暴。据研究人员称,这些被挤出的星团的命运还不确定。它们可能在引力作用下保持完整,进化成球状星团,比如那些在银河系平面外运行的星团。或者,它们可能会分散开来,在螺旋星系周围形成一个恒星光环,或者被抛离出去,成为银河系间游荡的恒星。查尔顿说:"我们认为,潮汐的星团可能在宇宙早期更为常见,当时宇宙较小,星系碰撞更为频繁。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

哈勃太空望远镜观测到12个相互作用的星系 碰撞引发了恒星的形成而不是毁灭

哈勃太空望远镜观测到12个相互作用的星系 碰撞引发了恒星的形成而不是毁灭 美国国家航空航天局的哈勃太空望远镜观测到了12个相互作用的星系,发现了富含气体、尘埃和恒星的长潮汐尾迹,沿潮汐尾迹发现了425个新生恒星簇。这些星团每个都包含多达 100 万颗蓝色的新生恒星,它们是星系碰撞的结果,星系碰撞引发了恒星的形成而不是毁灭。从这张哈勃太空望远镜拍摄的图片中可以看到,AM 1054-325 星系在邻近星系的引力作用下,从正常的薄饼状螺旋形状扭曲成了 S 形。这样的一个后果是,新生的恒星群沿着一条延伸数千光年的潮汐尾迹形成,就像一串珍珠。它们的形成是由于气体结在引力作用下坍缩,从而在每个星团中产生了大约 100 万颗新生恒星。资料来源:NASA、ESA、STScI、Jayanne English(马尼托巴大学)与你的想象相反,星系碰撞并不会摧毁恒星。事实上,粗暴和翻滚的动力学引发了新一代恒星的诞生,并可能伴随着行星的诞生。现在,美国国家航空航天局的哈勃太空望远镜已经锁定了12个相互作用的星系,这些星系有着长长的、像蝌蚪一样的潮汐尾巴,尾巴上有气体、尘埃和大量的恒星。哈勃望远镜的锐利度和对紫外线的敏感度发现了这些潮汐尾巴上的 425 个新生恒星星团,看上去就像一串串节日彩灯。每个星团包含多达 100 万颗蓝色的新生恒星。潮汐尾部的星系团已经存在了几十年。当星系相互作用时,引力潮汐力会拉出长长的气体和尘埃流。触须星系和老鼠星系就是两个广为人知的例子,它们都有狭长的手指状突起。一个天文学家小组结合新的观测数据和档案数据,得到了潮汐尾部星团的年龄和质量。他们发现,这些星团非常年轻只有1000万年的历史。而且它们似乎是以同样的速度沿着绵延数千光年的尾巴形成的。"在尾部看到大量年轻天体是个惊喜。它告诉我们很多关于星团形成效率的信息,"第一作者、弗吉尼亚州阿什兰市伦道夫-麦肯学院的迈克尔-罗德鲁克说。"有了潮汐尾部,你就会建立起新一代的恒星,否则这些恒星可能不会存在"。这些尾巴看起来就像是星系的旋臂,并将其伸向太空。旋臂的外部像太妃糖一样被一对相互作用的星系之间的引力拉扯着。在星系合并之前,星系中含有丰富的分子氢尘埃云,这些尘埃云可能一直处于惰性状态。但是,这些氢云在碰撞过程中受到了挤压和撞击。这就把氢压缩到了一定程度,从而引发了一场恒星诞生的风暴。这些被挤出的星团的命运还不确定。它们可能在引力作用下保持完整,进化成球状星团就像那些在银河系平面外运行的星团一样。或者,它们可能会分散开来,在宿主星系周围形成一个恒星光环,或者被抛弃,成为星系间的流浪恒星。在宇宙早期,星系之间的碰撞更为频繁,这种串珠状恒星形成可能更为常见。哈勃观测到的这些附近的星系是很久以前发生的事情的代表,因此是研究遥远过去的实验室。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

中国天文学家观察到矮星系向超紧凑矮星系(UCD)的完全转变

中国天文学家观察到矮星系向超紧凑矮星系(UCD)的完全转变 矮星系是星系中光度最小的一类,在宇宙演化过程中起着至关重要的作用。矮星系是在 2000 年左右被发现的,由于其内部恒星系统密度极高,质量和大小介于星系和星团之间而得名。尽管近年来的一些研究结果表明,许多 UCD 可能起源于坍缩的矮星系,但具体的演化过程尚未得到观测证实。来自北京大学、上海交通大学以及加拿大和美国研究机构的研究人员利用哈勃太空望远镜、加拿大-法国-夏威夷望远镜、双子座北望远镜等观测设备,在室女座星团中搜寻到了约600个UCD候选天体。他们发现,大约15%的UCD被微弱的恒星晕所包围。研究称,这些UCD在形态、颜色和空间分布方面与强核矮星系(一种新定义的矮星系)高度相关,这可能是矮星系向UCD演化的一个中间阶段。该研究的第一作者、北京大学博士生王凯翔说,研究小组首次观测到了UCD形成的各个阶段。王说,这项研究展示了矮星系是如何塌缩并形成UCD甚至星系团的,清楚地揭示了其演化规律。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

耶鲁研究发现双星系统中的气候温和行星比以前已知的要多

耶鲁研究发现双星系统中的气候温和行星比以前已知的要多 如果卢克-天行者的童年是在一个更温和的塔图因星球上长大,那么他的童年可能就不会那么严酷就像耶鲁大学领导的一项新研究中确定的那样。据该研究的作者称,双星系统换句话说,有两个太阳的双星系统中的气候友好型行星比以前已知的要多。他们说,这可能表明,至少在某些方面,宇宙倾向于有序排列,而不是混乱错位。在这项研究中,研究人员观察了双星系统中的行星在双星系统中,单个行星围绕一颗主恒星运行,附近的第二颗恒星则围绕整个系统运行。(星球大战》电影中虚构的沙漠行星塔图因(Tatooine)就位于双星系统中)。耶鲁大学文理学院天文学助理教授、这项新研究的主要作者马莱娜-赖斯(Malena Rice)说:"我们首次展示了一个意想不到的堆积系统,在这个系统中,所有的东西都是对齐的。这项新研究于2月22日发表在《天文学杂志》(The Astronomical Journal)上。行星的运行方向与第一颗恒星的旋转方向完全一致,而第二颗恒星则在与行星相同的平面上环绕该系统运行"。赖斯的研究小组利用各种资料来源,包括盖亚DR3高精度恒星天体测量目录、美国宇航局系外行星档案的行星系统综合参数表以及系外行星自旋轨道角测量TEPCat目录,创建了双星系统中行星的三维几何图形。研究人员发现,在他们研究的 40 个系统中,有 9 个系统实现了"完美"对齐。赖斯说:"这可能表明,行星系统喜欢向有序的构型推进。这对在这些系统中形成生命也是个好消息。排列方式不同的恒星伴星可能会对行星系统造成严重破坏,使其倾覆或随着时间的推移使行星快速变热。"那在气候更加温和的塔图因,世界会变成什么样呢?在一年中的某些季节,白天会持续不断,一颗恒星照亮地球的一侧,而另一颗恒星则照亮地球的另一半。但阳光并不总是炽热的,因为其中一颗恒星离地球更远。在一年中的其他季节,两个太阳会照亮地球的同一侧,其中一个太阳看起来比另一个大得多。编译自:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人