新研究介绍了一种通过尿液检测衰老细胞的新方法

新研究介绍了一种通过尿液检测衰老细胞的新方法 瓦伦西亚理工大学(Universitat Politècnica de València)、瓦伦西亚大学(Universitat de València)、CIBER 生物工程、生物材料和纳米医学部(CIBER-BBN)、神经退行性疾病部(CIBER-NED)以及普林西比-费利佩研究中心(CIPF)的研究人员通力合作,开发出了一种用于检测尿液中衰老细胞的创新探针。这一突破可以加深我们对衰老过程的了解,有助于监测和开发新的策略来应对与衰老相关的退化性疾病。该研究成果发表在《自然通讯》(Nature Communications)上。研究人员解释说,衰老的标志之一是大多数器官中衰老细胞的出现频率增加,从而导致组织功能障碍。这些细胞的存在还与许多与衰老相关的疾病有关。"细胞衰老的主要目的是防止可能导致癌症的受损细胞增殖。然而,当损伤持续存在或在衰老过程中,衰老细胞会异常积累,影响组织功能并加速衰老。这就是为什么必须创建新的系统来轻松有效地检测这些细胞,"UPV 分子识别研究和技术开发大学间研究所(IDM)副所长兼 CIBER-BBN 科学主任 Ramón Martínez Máñez 说。研究人员。图片来源:UPV将探针注射到小鼠体内后,探针会与衰老细胞中特别丰富的一种酶发生作用,产生一种荧光化合物,并迅速随尿液排出体外。"根据尿液中信号的强度,我们可以知道机体内衰老细胞的负担,"紫外线研究中心副主任 Isabel Fariñas 和 CIPF 的研究员 Mar Orzáez 指出。在研究中,他们还监测了使用消除衰老细胞并能使组织恢复活力的药物进行衰老治疗的情况。他们观察到,尿液中信号的强度与动物衰老程度的降低以及与年龄有关的焦虑的减少有关。"给药后,会释放出一种荧光团,最终由肾脏排出体外,可以通过尿液进行测量。荧光团的强度表明细胞衰老负荷的水平,我们已经看到,这与衰老过程中与年龄相关的焦虑和衰老治疗有关,"紫外线公司的伊莎贝尔-法里纳斯(Isabel Fariñas)和 CIBERNED 的副主任解释说。来自瓦伦西亚理工大学、瓦伦西亚大学、CIBER-BBN、CIBERNED 和 Príncipe Felipe 研究中心的研究小组取得的成果为更好地了解衰老及其对健康的影响开辟了一条途径。"拉蒙-马丁内斯-马涅斯总结说:"它可以帮助我们开发出更有效的方法来解决与衰老有关的问题,并开发出简便的泌尿治疗方法来消除或减少细胞衰老,甚至是人类的衰老。 ... PC版: 手机版:

相关推荐

封面图片

钙过量 - 科学家开发出杀死癌细胞的新方法

钙过量 - 科学家开发出杀死癌细胞的新方法 钙离子在细胞功能中起着至关重要的作用,但如果钙离子含量过高,就会对细胞造成危害。研究人员最近开发出一种化合物,可通过调节细胞内的钙离子流入来靶向摧毁肿瘤细胞。这种创新方法利用了肿瘤组织内已有的钙离子,无需外部钙源。《Angewandte Chemie》杂志上发表的一篇论文详细介绍了这一研究成果。生物细胞需要钙离子来维持线粒体(细胞的动力室)的正常运转。然而,如果钙离子过多,线粒体过程就会失衡,细胞就会窒息。由韩国首尔梨花女子大学的尹珠英(Juyoung Yoon)领导的研究小组与来自中国的研究小组一起,利用这一过程开发出了一种协同抗肿瘤药物,它可以打开钙离子通道,从而在肿瘤细胞内引发致命的钙离子风暴。研究人员瞄准了两个通道,第一个是外膜上的通道,另一个是内质网中的钙通道,内质网也是一个储存钙离子的细胞器。位于外膜的通道在暴露于大量活性氧(ROS)时打开,而内质网中的通道则被一氧化氮分子激活。为了产生能打开外膜钙通道的 ROS,研究人员使用了染料吲哚菁绿。这种生物活性剂可通过近红外线照射激活,不仅能引发导致 ROS 的反应,还能使环境升温。研究小组解释说,局部高温会激活另一种活性剂 BNN-6 释放一氧化氮分子,从而打开内质网中的通道。在肿瘤细胞系试验成功后,研究小组又在植入肿瘤的小鼠体内测试了一种注射制剂。为了创造出一种生物兼容的复合药物,研究人员将活性成分装入了微小的改性多孔硅珠中,这种硅珠对人体无害,但能被肿瘤细胞识别并转运到细胞内。将这些微珠注入小鼠血液后,研究人员观察到药物在肿瘤内积聚。照射近红外线成功地触发了作用机制,接受这种制剂的小鼠几天后肿瘤就消失了。作者强调,这种离子流入方法可能也适用于相关的生物医学研究领域,因为类似的机制可以激活不同于钙离子通道的离子通道,从而找到新的治疗方法。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

科学家创造利用寨卡病毒消灭脑癌细胞的新方法

科学家创造利用寨卡病毒消灭脑癌细胞的新方法 科学家们发现,寨卡病毒疫苗株可以消灭脑肿瘤细胞,而健康的细胞则不受影响。新加坡国立大学杜克大学医学院(Duke-NUS)的科学家们开发出一种新方法,利用寨卡病毒摧毁脑癌细胞并抑制肿瘤生长,同时保护健康细胞。研究小组利用杜克-新加坡国立大学开发的寨卡病毒候选疫苗,发现了这些毒株如何靶向快速增殖的细胞而不是成熟细胞,从而使它们成为靶向成人大脑中快速生长的癌细胞的理想选择。他们的研究结果发表在《转化医学杂志》(Journal of Translational Medicine)上,有可能为目前预后较差的脑癌患者提供一种新的治疗方法。多形性胶质母细胞瘤是最常见的恶性脑癌,全球每年确诊患者超过 30 万。这类患者的生存率很低(约 15 个月),主要原因是肿瘤复发率高和治疗方案有限。对于这类患者,溶瘤病毒疗法即使用工程病毒感染并杀死癌细胞可能会解决目前的治疗难题。寨卡病毒在溶瘤病毒疗法中的应用前景寨卡病毒就是一种处于早期开发阶段的疫苗。杜克大学-新加坡国立大学团队使用了寨卡病毒减毒活疫苗(ZIKV-LAV)毒株,这种"弱化"病毒感染健康细胞的能力有限,但仍能在肿瘤内迅速生长和扩散。"我们之所以选择寨卡病毒,是因为它能自然感染大脑中快速增殖的细胞,使我们能够接触到传统上难以瞄准的癌细胞。我们的ZIKV-LAV毒株还能在脑癌细胞中自我复制,因此这是一种活体疗法,可以传播并攻击邻近的病变细胞,"论文第一作者、杜克大学癌症与干细胞生物学研究项目高级研究员卡拉-比安卡-卢埃纳-维克多里奥博士说。感染 ZIKV-LAV 的培养人类神经元。粉红色为感染,蓝色为细胞核。资料来源:杜克大学-新加坡国立大学医学院维克多里奥博士和研究小组确定,ZIKV-LAV 株在感染癌细胞时非常有效,因为这些病毒与蛋白质结合,而这些蛋白质只在癌细胞中大量存在,在健康细胞中则没有。感染癌细胞后,这些病毒株会劫持细胞资源进行繁殖,最终杀死细胞。癌细胞死亡后,其保护膜会破裂,释放出细胞内的物质,包括病毒后代,这些病毒后代会感染并杀死邻近的癌细胞。此外,受感染细胞释放出的一些细胞蛋白可激活免疫反应,进一步抑制肿瘤生长。通过实验,研究小组观察到,ZIKV-LAV 株感染会导致 65% 至 90% 的多形性胶质母细胞瘤肿瘤细胞死亡。虽然ZIKV-LAV株也感染了9%到20%的脑血管细胞,但感染并没有杀死这些健康细胞。相比之下,原始的母株寨卡病毒杀死了高达50%的健康脑细胞。科学家们还发现,ZIKV-LAV 菌株即使感染了健康细胞,也不能很好地繁殖。在感染了 ZIKV-LAV 的健康脑细胞中测得的病毒数量仅为感染前的 0.36 到 9 倍。相比之下,感染了 ZIKV-LAV 的脑癌细胞中的病毒数量是感染前的 1 000 到 10 亿倍。这进一步说明,与正常细胞相比,癌细胞中的条件更有利于病毒的繁殖。未来方向和应用"自2016年爆发寨卡病毒以来,人们对该病毒的性质及其破坏性影响产生了恐惧,这是可以理解的。通过我们的工作,我们希望以一种新的视角来展示寨卡病毒,突出它杀死癌细胞的潜力。"杜克-新加坡国立大学癌症与干细胞生物学研究项目助理教授安-玛丽-查科(Ann-Marie Chacko)说:"当一种活病毒被减毒,使其能安全有效地对抗传染病时,它就能造福人类健康不仅是作为一种疫苗,而且还是一种有效的肿瘤消杀剂。"她也是这篇论文的资深作者。右起:Ann-Marie Chacko 助理教授、Alfred Sun 助理教授、Carla Bianca Luena Victorio 博士和 Ooi Eng Eong 教授与他们的寨卡疫苗菌株培养物。图片来源:杜克大学-新加坡国立大学医学院减毒活疫苗病毒株最初由杜克大学新发传染病研究项目的 Ooi Eng Eong 教授小组开发。作为对照,杜克-新加坡国立大学神经科学与行为障碍研究项目助理教授阿尔弗雷德-孙(Alfred Sun)团队还在人类干细胞培养的脑神经元或神经细胞上对病毒株进行了测试。这为评估在人体细胞中使用病毒作为疗法的安全性和有效性提供了可靠的筛选工具。查科副教授的研究小组正在改进这些病毒株和其他寨卡病毒株,以提高它们不仅能杀死脑癌细胞,还能杀死其他类型癌细胞的效力,同时使它们在病人身上使用时更加安全。他们还在对病毒进行改良,以便在将病毒注射到病人体内后对其进行无创成像。这样,医生就能监测病毒在患者体内的去向以及在肿瘤内发挥作用的时间。为此,该小组正在探索将他们的病毒株商业化,既作为寨卡疫苗,也作为脑癌的治疗方法,还有可能作为卵巢癌等其他癌症的治疗方法。杜克-新加坡国立大学负责研究的高级副院长 Patrick Tan 教授说:"这是一个很好的例子,说明了杜克大学新加坡国立大学的不同研究项目是如何汇聚在一起,利用各自的专业知识来推动医学知识的发展和改善病人的生活的。该团队的宝贵见解有朝一日可能会转化为控制肿瘤生长的新治疗方案,甚至治愈癌症。"编译自:ScitechDaily ... PC版: 手机版:

封面图片

新研究发现了噬菌体破坏细菌防御系统的一种新方法

新研究发现了噬菌体破坏细菌防御系统的一种新方法 一项突破性研究揭示了噬菌体蛋白的新调控机制,为了解细菌防御机制和开发基于噬菌体的疗法开辟了新途径。新发现推动了抗击危险细菌的重大进展。由奥塔哥大学的彼得-菲纳兰教授领导的一个国际科学家小组研究了噬菌体(一种感染细菌的病毒)所使用的一种特殊蛋白质。对细菌和噬菌体之间这种微观军备竞赛的研究非常重要,因为它可以开发出抗生素的替代品。这项研究发表在著名的国际期刊《自然》(Nature)上,分析了噬菌体在部署抗CRISPR时使用的一种蛋白质,这是它们阻断细菌CRISPR-Cas免疫系统的方法。领衔作者、奥塔哥微生物学和免疫学系的尼尔斯-伯克霍尔茨(Nils Birkholz)博士说,了解噬菌体如何与细菌相互作用,是在人类健康或农业领域利用噬菌体对付细菌病原体的道路上迈出的重要一步。"具体来说,我们需要了解细菌用来保护自己免受噬菌体感染的防御机制,如CRISPR,这与我们利用人体免疫系统抵御病毒的方式并无二致,以及噬菌体如何抵御这些防御机制。例如,如果我们知道噬菌体是如何杀死特定细菌的,这就有助于确定适当的噬菌体作为抗菌剂使用。更具体地说,我们必须了解噬菌体在感染后是如何控制它们的反防御武器库(包括抗CRISPR)的我们必须了解噬菌体是如何调控在与细菌的战斗中有用的基因的表达的。"这项研究揭示了噬菌体在部署抗CRISPRs时需要多么谨慎。一种特定的噬菌体蛋白质有一个在许多参与基因调控的蛋白质中非常常见的部分或结构域;众所周知,这个螺旋-翻转-螺旋(HTH)结构域能够特异性地结合DNA序列,并根据具体情况打开或关闭基因。这种蛋白质的 HTH 结构域用途更为广泛,并表现出一种以前未知的调控模式。它不仅能利用这个结构域结合 DNA,还能结合其RNA转录物,RNA转录物是 DNA 序列和其中编码的抗CRISPR 之间的中介分子。由于这种蛋白质参与调节抗CRISPR的产生,这意味着这种调节具有更多层次它不仅通过DNA结合机制发生,还通过我们发现的结合信使RNA的新机制发生。这一发现可能会对基因调控的理解产生重大影响。"在了解噬菌体如何躲避 CRISPR-Cas 的防御并在一系列应用中杀死目标细菌方面,揭示这种意想不到的复杂调控机制是一项重要进展。这一发现尤其令科学界振奋,因为它展示了一个经过深入研究的蛋白质家族的新型调控机制。HTH 结构域自 20 世纪 80 年代初被发现以来就一直受到深入研究,因此我们最初认为我们的蛋白质会像其他具有 HTH 结构域的蛋白质一样发挥作用,但当我们发现这种新的作用模式时,我们感到非常惊讶。这一发现有可能改变该领域对这一重要而广泛的蛋白质结构域的功能和机制的看法,并可能对我们理解基因调控产生重大影响。"编译自/ScitechDaily ... PC版: 手机版:

封面图片

邓迪大学科学家发现阻止活跃癌细胞的方法

邓迪大学科学家发现阻止活跃癌细胞的方法 邓迪大学药物发现部门(DDU)与伦敦玛丽女王大学的一个合作研究项目发现了一种被称为工具分子的化学物质,它可以阻止活跃的癌细胞。通过合作推进癌症治疗使用这些工具分子可以迫使一种特定类型乳腺癌的肿瘤细胞进入促衰老状态类似于睡眠状态,在这种状态下,它们不再分裂或导致肿瘤生长。这种情况会使癌细胞对第二类工具分子(称为"衰老分解药物")产生敏感性,从而消灭癌细胞。它还可以"释放"癌细胞,让人体的免疫系统看到它们,从而提供更多的治疗机会。研究人员在研究基底样乳腺癌(BLBC)时开发出了这种"双拳"方法。癌症新疗法的潜力由巴兹慈善机构资助、伦敦玛丽女王大学衰老学教授兼表型筛选设施学术带头人 Cleo Bishop 领导的研究小组发现了一种迫使 BLBC 细胞进入促衰老状态的途径。随后,他们与邓迪大学药物发现组(DDU)的另一个团队合作,开发出了促进细胞衰老的工具分子。邓迪大学药物发现小组成员。资料来源:邓迪大学目前,其他地方正在开发药物疗法,以打出消灭细胞的"第二拳"。毕晓普教授说:"目前,治疗蓝细胞白血病最常见的方法是手术和不成熟的化疗方案。因此,由于缺乏量身定制疗法的可能靶点,而且临床过程具有侵袭性,这意味着患有 BLBC 的女性预后特别差。促衰老疗法能激活稳定的细胞周期停滞,阻止肿瘤生长,引发抗肿瘤免疫反应,并使癌症接受称为衰老素的新型治疗方案"。这项研究利用高内涵成像技术从 DDU 的多样性库中识别出工具分子,制药公司 ValiRx 现已选定这些分子进行进一步评估。本月,邓迪大学与该公司签署了一项为期五年的协议。根据该协议,"第一拳"工具分子将率先进入为期 12 个月的评估阶段,如果评估成功,三方将合资成立一家新公司。邓迪大学药物发现部业务发展主管夏洛特-格林(Charlotte Green)说:"近年来,一举两得的方法受到了广泛关注,但目前还没有临床先例,通过与 ValiRx 公司合作推进该项目,我们将引领研究成果向临床转化的方向。"ValiRx 首席执行官 Suzy Dilly 博士说:"邓迪大学和研究设施的实力令人印象深刻,在过去一年中,我们审查了来自邓迪大学团队的多个项目,我们相信,这份评估协议将成为一系列新项目中的第一个,可以纳入我们的管道。"编译自:ScitechDaily ... PC版: 手机版:

封面图片

研究人员开发出一种利用磁子传输量子信息的新方法

研究人员开发出一种利用磁子传输量子信息的新方法 HZDR 的研究人员成功地在磁盘中产生了类似于波的激发即所谓的磁子来专门操纵碳化硅中原子大小的量子比特。这为量子网络中的信息传输开辟了新的可能性。图片来源:HZDR / Mauricio Bejarano为了满足这一需求,德累斯顿-罗森多夫亥姆霍兹中心(HZDR)的一个研究小组现在推出了一种传输量子信息的新方法:该小组通过利用磁子(磁性材料中的波状激起)的磁场来操纵量子比特(即所谓的量子比特),磁子发生在微观磁盘中。研究人员在《科学进展》(Science Advances)杂志上发表了他们的研究成果。建造可编程的通用量子计算机是当代最具挑战性的工程和科学研究之一。这种计算机的实现为物流、金融和制药等不同行业领域带来了巨大潜力。然而,由于量子计算机技术在存储和处理信息时存在固有的脆弱性,因此阻碍了实用量子计算机的建造。量子信息被编码在量子比特中,而量子比特极易受到环境噪声的影响。微小的热波动(几分之一度)就可能完全破坏计算。这促使研究人员将量子计算机的功能分布在不同的独立构件中,以努力降低出错率,并利用这些构件的互补优势。"然而,这就带来了一个问题,即如何在模块之间传输量子信息,使信息不会丢失,"HZDR 研究员、该刊物第一作者毛里西奥-贝哈拉诺(Mauricio Bejarano)说。"我们的研究正是在这个特定的利基上,在不同的量子模块之间传输通信。"目前,传输量子信息和寻址量子比特的既定方法是通过微波天线。这是Google和 IBM 在其超导芯片中使用的方法,也是在这场量子竞赛中处于领先地位的技术平台。"而我们则是通过磁子来寻址量子比特。磁子可被视为穿过磁性材料的磁激发波。这样做的好处是,磁子的波长在微米范围内,比传统微波技术的厘米波短得多。因此,磁子的微波足迹在芯片中花费的空间更少。HZDR 小组研究了磁子与碳化硅晶体结构中硅原子空位形成的量子比特的相互作用,碳化硅是一种常用于大功率电子器件的材料。这类量子比特通常被称为自旋量子比特,因为量子信息是由空位的自旋状态编码的。但是,如何利用磁子来控制这类量子比特呢?"通常情况下,磁子是通过微波天线产生的。"贝哈拉诺解释说:"这就带来了一个问题,即很难将来自天线的微波驱动与来自磁子的微波驱动分离开来。"为了将微波从磁子中分离出来,HZDR 团队利用了一种在镍铁合金微观磁盘中可以观察到的奇特磁现象。"由于非线性过程,磁盘内的一些磁子具有比天线驱动频率低得多的频率。我们只用这些频率较低的磁子来操纵量子比特"。研究小组强调,他们还没有进行任何量子计算。不过,他们表明,完全用磁子处理量子比特从根本上是可行的。"迄今为止,量子工程界还没有意识到磁子可以用来控制量子比特,"Schultheiß强调说。"但我们的实验证明,这些磁波确实可以派上用场"。为了进一步发展他们的方法,研究小组已经在为未来的计划做准备:他们想尝试控制几个间距很近的单个量子比特,让磁子介导它们的纠缠过程这是进行量子计算的先决条件。他们的设想是,从长远来看,磁子可以被直接电流激发,其精确度可以达到在量子比特阵列中专门针对单个量子比特。这样就可以将磁子用作可编程量子总线,以极其有效的方式寻址量子比特。虽然未来还有大量工作要做,但该研究小组的研究强调,将磁子系统与量子技术相结合,可以为未来开发实用量子计算机提供有益的启示。编译自:ScitechDaily ... PC版: 手机版:

封面图片

研究提醒:生酮饮食真的会加速衰老

研究提醒:生酮饮食真的会加速衰老 这种饮食方式最初用于治疗难治性癫痫,近年来被越来越多的人滥用于减肥和瘦身。然而,最新的一项研究表明,这种饮食方式可能会加速细胞衰老。研究人员通过小鼠试验发现,长达21天的生酮饮食会导致小鼠心脏、肾脏、肝脏和大脑等多个器官的细胞衰老。在实行了6个月生酮饮食的人类志愿者中,也观察到了类似的细胞衰老和多种相关的促炎分泌因子水平增加现象。细胞衰老是指细胞的功能逐渐受损,最终导致组织和器官的老化和功能下降。这对身体健康和长寿可能会有负面影响。研究人员还尝试更换生酮饮食中不同的脂肪来源,但仍旧观察到了细胞衰老的增加。这表明,生酮饮食本身可能与细胞衰老有直接关联,而不仅仅是某种特定成分导致的结果。此外,生酮饮食导致的细胞衰老比例与一些组织损伤模型中报告的比例相似,这进一步强调了生酮饮食可能对身体健康造成的潜在风险。那么,生酮饮食到底是如何导致细胞衰老的呢?研究人员发现,生酮饮食诱导了一种名为p53的蛋白的活化,这是一种与细胞衰老和肿瘤抑制有关的蛋白。p53的活化会引发细胞衰老,从而导致器官和组织功能的下降。这些研究结果引发了人们对生酮饮食安全性和长期影响的关注。虽然生酮饮食在短期内可能能够帮助人们减肥,但其对健康的潜在影响需要引起足够的重视。因此,对于正在追求健康减肥的朋友来说,选择饮食方式要慎重考虑,并且应该在专业人士的指导下进行。科学的健康饮食应该是多样化的,包含适量的碳水化合物、蛋白质和脂肪,以确保身体获得全面的营养,同时避免潜在的健康风险。 ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人