卡林顿太阳风暴在1859年的树木年轮中留下证据

卡林顿太阳风暴在1859年的树木年轮中留下证据 在赫尔辛基大学、芬兰自然资源研究所和奥卢大学联合开展的一项研究中,首次在树木年轮中发现了卡林顿风暴后放射性碳浓度增加的迹象。在此之前,只有在强度更大的太阳风暴中才能检测到放射性碳的痕迹。太阳释放出的强磁化带电粒子云(称为太阳等离子体流)与地球的地磁场相遇,就会产生地磁暴。地磁场引导太阳风暴粒子主要通过极地进入大气层。这种现象最明显的后果就是极光。在高层大气中,足够高能的粒子通过核反应也会产生放射性碳(14C),一种碳的放射性同位素。经过数月乃至数年的时间,放射性碳最终会进入低层大气,成为大气中二氧化碳的一部分,并最终通过光合作用进入植物体内。光合作用过程将二氧化碳中的信息保存在树木的年轮中。拉普兰的树木是研究太阳过去行为的独特天然档案库。马尔库-奥伊诺宁(Markku Oinonen)正在钻取一个样本,其中包含有关 19 世纪事件的有趣信息。图片来源:Joonas Uusitalo为了获取放射性碳所保存的信息,需要从历经数年生长的木质材料中雕刻提取样本。通过燃烧和化学还原将样本加工成纤维素,再将纤维素加工成纯碳。使用粒子加速器测量纯碳中放射性碳的比例。主持这项研究的赫尔辛基大学年代学实验室主任马尔库-奥伊诺宁(Markku Oinonen)说:"放射性碳就像一个宇宙标记,描述了与地球、太阳系和外太空有关的现象。"在现代,如果发生与卡林顿事件相应的太阳风暴,电力和移动网络就会中断,卫星和导航系统也会出现重大问题,从而导致空中交通等方面的问题。因此,准确了解太阳活动对社会大有裨益。比卡林顿风暴更小、更常见的太阳风暴如今可以通过测量设备和卫星进行研究,而更大的太阳风暴则可以通过测量树木年轮中的放射性碳浓度等方法进行研究。迄今为止,还不可能利用传统的放射性碳技术专门研究像卡林顿事件这样的中型太阳风暴,因为这种风暴在现代还没有发生过。最近的这项研究为研究卡林顿风暴的频率开辟了一种潜在的新方法,这可能有助于更好地应对未来的威胁。研究结果是利用奥卢大学研究人员开发的放射性碳生成和传输数值模型解释的。奥卢大学的博士后研究员克谢尼娅-戈卢宾科(Kseniia Golubenko)说:"动态大气碳传输模型是专门为描述大气中放射性碳分布的地理差异而开发的。"在最近发表的研究报告中,拉普兰树木的放射性碳含量与低纬度地区树木的放射性碳含量有何不同,这一点意义重大。首次测量是在赫尔辛基大学加速器实验室进行的,而在另外两个实验室进行的重复测量则大大降低了之前的不确定性。这一发现有助于更好地了解人类排放化石燃料之前的大气动力学和碳循环,从而能够开发出越来越详细的碳循环模型。年表实验室的博士研究员约纳斯-乌西塔罗(Joonas Uusitalo)说:"太阳耀斑造成的过量放射性碳有可能主要是通过北部地区输送到低层大气的,这与人们对其运动的普遍认识相反。"乌西塔罗补充说:"太阳活动的变化导致高层大气中放射性碳生成量的周期性变化,这也有可能导致我们的研究结果中看到的地面上的局部差异。"放射性碳的主要部分是由来自太阳系外的银河宇宙射线产生的,尽管异常强烈的太阳风暴会在大气中产生单个的放射性碳同位素爆发。反过来,宇宙射线又会被太阳风削弱,太阳风是源自太阳的持续粒子流,以 11 年为周期在强弱之间波动。这个问题需要进一步研究。历史记录显示,1730 年和 1770 年也曾发生过重大的地磁暴,因此对它们的追踪可能是下一个重点。编译自/scitechdaily ... PC版: 手机版:

相关推荐

封面图片

ESA 盖亚望远镜遭遇微流星和太阳风暴双重打击

ESA 盖亚望远镜遭遇微流星和太阳风暴双重打击 ESA 披露其盖亚(Gaia)望远镜最近遭遇微流星和太阳风暴的双重打击,但在工程团队的努力下它恢复了正常工作。ESA 称盖亚在四月被微流星高速撞击,在保护罩上留下了一个裂缝,而散射的阳光偶尔会干扰其敏感的传感器。与此同时,盖亚相机使用的 106 个 CCD 之一发生了故障,导致了大量错误。在发生故障的同时,和地球一起,盖亚遭到了太阳风暴。两起事件导致了望远镜产生了大量错误信息。 via Solidot

封面图片

NASA 如何追踪几十年来最强烈的太阳风暴

NASA 如何追踪几十年来最强烈的太阳风暴 2024年5月14日,太阳发射了一次强烈的太阳耀斑。这次太阳耀斑是太阳周期 25 中最大的一次,被列为 X8.7 级耀斑。X级表示最强烈的耀斑,而数字则提供了有关其强度的更多信息。资料来源:NASA/SDO美国宇航局月球到火星(M2M)空间天气分析办公室代理主任特雷莎-尼维斯-钦奇利亚说:"我们将对这一事件进行多年的研究。它将帮助我们测试我们的模型和对太阳风暴理解的极限。"从2024年5月3日到5月9日,美国宇航局的太阳动力学天文台观测到了82次明显的太阳耀斑。这些耀斑主要来自太阳上两个名为 AR 13663 和 AR 13664 的活跃区域。这段视频重点介绍了所有被归类为M5或更高的耀斑,其中有9个被归类为X级太阳耀斑。强烈的太阳耀斑和集合放射粒子太阳风暴的最初迹象始于 5 月 7 日晚些时候的两次强烈太阳耀斑。从 5 月 7 日至 11 日,多个强烈的太阳耀斑和至少 7 个集合放射粒子冲向地球。从那以后,同一太阳区又释放了许多大型耀斑,其中包括 5 月 14 日的 X8.7 耀斑本太阳周期中最强大的耀斑)。2024年5月14日,太阳发射了一次强烈的太阳耀斑。这次太阳耀斑是太阳周期25中最大的一次,被归类为X8.7耀斑。资料来源:美国宇航局戈达德太空飞行中心CME以高达每小时300万英里的速度移动,从5月10日开始成波到达地球,形成了持久的地磁暴,其等级达到了G5地磁暴等级中的最高级别,这是自2003年以来从未出现过的。位于马里兰州格林贝尔特的美国国家航空航天局戈达德太空飞行中心的太空科学家、美国国家航空航天局太阳物理学公民科学负责人伊丽莎白-麦克唐纳说:"集合放射粒子基本上都是同时到达的,条件恰到好处,形成了一场真正具有历史意义的风暴。"当风暴到达地球时,全球各地都能看到绚丽的极光。在异常低的纬度地区,包括美国南部和印度北部,甚至也能看到极光。最强烈的极光出现在 5 月 10 日晚上,并在整个周末持续照亮夜空。数以千计的报告提交到美国宇航局资助的"Aurorasaurus"公民科学网站,帮助科学家研究这一事件,了解更多有关极光的知识。麦克唐纳说:"相机甚至是标准的手机相机对极光颜色的敏感度比过去要高得多。通过收集世界各地的照片,我们有巨大的机会通过公民科学了解更多有关极光的信息"。2024 年 5 月 10 日,不列颠哥伦比亚省西南部上空出现日冕极光。资料来源:美国国家航空航天局/玛拉-约翰逊-格罗测量地磁暴强度衡量地磁风暴强度的一种方法是扰动风暴时间指数,该指数可追溯到 1957 年,这次风暴与 1958 年和 2003 年的历史性风暴相似。据报道,磁纬度低至 26 度的地方都能看到极光,最近的这场风暴可能会与过去五个世纪中一些最低纬度的极光目击记录相媲美,不过科学家们仍在评估这一排名。"斯米德航空航天工程科学系研究教授、位于科罗拉多州博尔德市的 NCAR 高空天文台高级研究助理德洛丽丝-克尼普说:"要测量一段时间内的风暴有点困难,因为我们的技术总是在不断变化。"极光能见度并不是完美的衡量标准,但它能让我们对几个世纪以来的情况进行比较。麦克唐纳鼓励人们继续向Aurorasaurus.org 提交极光报告,并指出,即使没有看到极光,对于帮助科学家了解极光事件的范围也是非常有价值的。持续监测和未来研究的重要性风暴来临之前,负责预测太阳风暴影响的美国国家海洋和大气管理局空间天气预报中心向电网和商业卫星运营商发出通知,帮助他们减轻潜在的影响。警告帮助美国国家航空航天局的许多任务为风暴做好了准备,一些航天器预先关闭了某些仪器或系统的电源,以避免出现问题。美国宇航局研究极地冰盖的 ICESat-2 进入了安全模式,这可能是因为风暴导致阻力增大。展望未来要了解空间天气对卫星、载人飞行任务以及地基和天基基础设施的影响,就必须掌握更多有关太阳活动如何影响地球高层大气的数据。迄今为止,在这一区域只有少数有限的直接测量数据。但更多的测量即将到来。未来的任务,如美国宇航局的地球空间动力学星座(GDC)和动态中性大气层-电离层耦合(DYNAMIC),将能够准确地观察和测量地球大气层如何对类似太阳风暴期间发生的能量流入做出反应。当美国国家航空航天局(NASA)通过阿耳特弥斯(Artemis)任务将宇航员送往月球,以及随后送往火星时,这些测量也将非常有价值。美国国家航空航天局的太阳动力学天文台(SDO)拍摄到了这张X5.8太阳耀斑的图像,该耀斑在美国东部时间2024年5月10日晚上9点23分达到峰值。该图像显示了极紫外光的子集,突出显示了耀斑中的极热物质。资料来源:美国宇航局 SDO造成最近暴风雨天气的太阳区域现在正绕着太阳的背面转动,在那里它的影响无法波及地球。然而,这并不意味着风暴已经结束。美国国家航空航天局(NASA)的日地震动天文台(STEREO)目前位于地球轨道前方约 12 度的位置,在地球上不再能看到该活跃区域后,它还将继续观察一天。"火星的活跃区域刚刚开始进入人们的视野,"位于华盛顿的美国宇航局总部的美国宇航局空间天气计划主任杰米-费沃斯(Jamie Favors)说。"我们已经开始在火星上捕捉一些数据,所以这个故事只会继续下去。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

太阳风暴在关键的播种期干扰了自动化农具的GPS系统

太阳风暴在关键的播种期干扰了自动化农具的GPS系统 据报道,暴风雨导致"一些 GPS 系统"暂时离线,影响了"实时运动"(RTK)系统的准确性。约翰迪尔和其他品牌的拖拉机在进行作物播种或施肥等农活时使用 RTK 实现"厘米级定位精度"。根据堪萨斯州和内布拉斯加州约翰迪尔经销商 Landmark Implement 上周末发出的警告,"受到极大损害"的系统导致在停机期间继续播种的农户"田地定位发生剧烈偏移,甚至发生方向错误"。Landmark 表示,拖拉机引导系统 AutoPath 在以后处理这些行时不会认为它们在哪里,而且在 GPS 系统故障时播种的田块可能很难或不可能使用该系统。据美国国家海洋和大气管理局(NOAA)称,太阳风暴是二十多年来袭击地球的最严重的太阳风暴之一,预计很快就会消退,但这对玉米作物来说正值关键时刻。维修权倡导组织的威利-凯德(Willie Cade)表示,5 月 15 日"是玉米播种的关键日期",他称如果玉米种植者不能在这一天之前播种他们的作物,后果将是"巨大的"。报道还引用了有机农场主汤姆-施瓦茨(Tom Schwarz)的话,他说太阳风暴使他们停止了作业,而现在的天气预报可能会进一步推迟播种。他的农场和其他类似的农场都使用 RTK 系统种植农作物,一直到拖拉机在农作物间行驶的车道边缘,如果种植时 GPS 不准确,他们以后就有可能毁掉农作物,因为人类司机"无法足够快或足够好地转向",以保持拖拉机田间持续行驶。从广义上讲,当今的农业生产严重依赖高科技,通常是高度自动化的拖拉机和其他设备。当这些设备出现故障时,农民往往求助无门,因为农作物的整个生命周期都被技术所控制。这种依赖性也是为什么现在"维修权"法律如此受欢迎的部分原因,因为农民希望在拖拉机出现故障时能够自己修理,而不是受制于制造商。像本周末影响农民的地磁暴就是等离子体和磁化粒子在所谓的日冕物质抛射中被抛出太阳时产生的。美国国家海洋和大气管理局(NOAA)按照从 G1 到 G5越来越严重的等级对它们进行评级。过去几天袭击地球的风暴已经达到了 G5 级。这种强大的风暴会给我们的星球造成严重破坏,例如 1989 年 3 月,一场强大的风暴导致加拿大某省数百万人停电数小时。较弱的风暴也会带来问题,比如 2022 年的一场风暴导致数十颗星链(Starlink)卫星瘫痪。当然本周末的"星链"也受到了一些影响。美国国家海洋和大气管理局(NOAA)称,今天可能会再次出现 G4 级或更高级别的"严重至极端"太阳风暴。到目前为止,风暴还没有导致与太阳风暴相关的中断的广泛报道,不过 Starlink 已经经历了一些"性能下降",而 Reddit 上的一些人则报告了飞行系统或HAM 无线电传输的问题。 ... PC版: 手机版:

封面图片

"缓慢"的太阳风:太阳轨道器揭开的神秘起源

"缓慢"的太阳风:太阳轨道器揭开的神秘起源 太阳轨道飞行器任务的新发现确定了太阳磁场线重新连接区域缓慢太阳风的起源,为深入了解太阳动力学和对地球的潜在影响提供了依据。图片来源:欧空局和美国国家航空航天局/太阳轨道器/EUI 小组;致谢:Lakshmi Pradeep Chitta,马克斯-普朗克太阳系研究所科学家们利用"太阳轨道器"(Solar Orbiter)航天器首次接近太阳时收集到的数据,在揭示"缓慢"太阳风的神秘起源方面取得了重大进展。太阳风可以以每秒数百公里的速度传播,多年来一直吸引着科学家,今天(5 月 28 日)发表在《自然-天文学》杂志上的新研究终于揭示了太阳风的形成过程。太阳风描述了带电等离子体粒子从太阳向太空的持续外流风速超过每秒 500 公里称为"快风",低于每秒 500 公里称为"慢风"。当这种风吹到地球大气层时,就会产生我们所熟知的北极光。但是,当大量等离子体以日冕物质抛射的形式释放出来时,也会造成危害,对卫星和通信系统造成严重破坏。尽管进行了几十年的观测,但人们对太阳风等离子体的释放、加速和输送太阳风等离子体离开太阳进入太阳系的来源和机制尤其是缓慢的太阳风仍不甚了解。太阳轨道器的目的是近距离研究太阳,重点是了解太阳风、太阳磁场和日光层太阳向太空发射的巨大带电粒子气泡。该航天器配备了十台科学仪器,可捕捉高分辨率图像并收集有关太阳大气层的数据,有助于将太阳活动与太阳系中的现象直接联系起来。这项任务对于增进我们对空间天气及其对地球影响的了解至关重要。图片来源:ESA/ATG medialab2020 年,欧洲航天局(ESA)在美国国家航空航天局(NASA)的支持下启动了太阳轨道器飞行任务。除了拍摄有史以来距离太阳最近、最详细的图像外,该任务的主要目的之一是测量太阳风并将其与太阳表面的起源区域联系起来。被称为"有史以来送往太阳的最复杂的科学实验室",太阳轨道器上搭载了十种不同的科学仪器一些是在太阳风经过航天器时就地收集和分析太阳风样本的仪器,其他遥感仪器旨在捕捉太阳表面活动的高质量图像。太阳轨道器的十套科学仪器将对太阳进行研究。仪器分为两类:原位仪器和遥感仪器。原位仪器测量航天器本身周围的情况。遥感仪器则测量远处的情况。这两组数据可以用来拼凑出一幅更完整的日冕和太阳风的图景。图片来源:ESA-S.Poletti通过将摄影数据和仪器数据相结合,科学家们第一次能够更清楚地确定缓慢的太阳风从何而来。这有助于他们确定太阳风是如何离开太阳并开始进入日光层的。日光层是太阳及其行星周围的一个巨大气泡,保护太阳系免受星际辐射。泰恩河畔纽卡斯尔诺桑比亚大学的斯蒂芬-亚德利博士领导了这项研究并解释说:"尽管过去的研究已经追溯了太阳风的起源,但这是在距离地球更近的地方进行的,而此时这种可变性已经消失。""由于太阳轨道器如此接近太阳,我们可以捕捉到太阳风的复杂性质,从而更清楚地了解太阳风的起源,以及这种复杂性是如何由不同源区的变化驱动的。"快速太阳风和慢速太阳风的速度差异被认为是由于它们源自太阳大气最外层日冕的不同区域。诺桑比亚大学的 Steph Yardley 博士。图片来源:Simon Veit-Wilson/诺桑比亚大学开阔日冕指的是磁场线一端固定在太阳上,另一端延伸到太空中的区域,为太阳物质逃逸到太空中创造了一条高速公路。这些区域温度较低,被认为是快速太阳风的来源。同时,闭合日冕指的是太阳磁场线闭合的区域,即磁场线两端与太阳表面相连。这些区域可以被看作是在磁场活跃区域上空形成的大的明亮环。这些闭合磁环偶尔会断开,为太阳物质提供短暂的逃逸机会,就像通过开放磁场线一样,然后重新连接起来,再次形成闭合磁环。这种情况一般发生在开放式和封闭式日冕的交汇处。太阳轨道器的目的之一是检验一种理论,即缓慢的太阳风源自封闭的日冕,并能够通过磁场线断裂和重新连接的过程逃逸到太空中。科学小组检验这一理论的方法之一是测量太阳风流的"成分"或组成。太阳物质中所含重离子的组合因其来源而异;较热的封闭日冕与较冷的开放日冕。利用太阳轨道器上的仪器,研究小组能够分析太阳表面的活动,然后将其与航天器收集的太阳风流进行比对。利用太阳轨道器捕捉到的太阳表面图像,他们能够精确地确定慢风流来自开放日冕和封闭日冕交汇的区域,从而证明了慢风能够通过断裂和重联过程从封闭磁场线中逃脱的理论。诺桑比亚大学太阳和空间物理学研究小组的亚德利博士解释说:"太阳轨道器测量到的太阳风成分变化与日冕中各种来源的成分变化是一致的。重离子与电子组成的变化提供了强有力的证据,证明这种变异不仅是由不同的源区驱动的,而且也是由于日冕中闭合环路与开放环路之间发生的再连接过程造成的。"欧空局太阳轨道飞行器任务是一项国际合作任务,来自世界各地的科学家和机构共同合作,贡献专业技能和设备。欧空局太阳轨道器项目科学家丹尼尔-穆勒(Daniel Müller)说:"从一开始,太阳轨道器任务的核心目标就是将太阳上的动态事件与它们对日光层周围等离子泡的影响联系起来。""为了实现这一目标,我们需要将对太阳的远程观测与对流经航天器的太阳风的现场测量结合起来。我为整个团队成功完成这些复杂的测量工作感到无比自豪。这一结果证实,太阳轨道器能够在太阳风及其太阳表面的源区之间建立强大的联系。这是这次任务的一个关键目标,为我们以前所未有的细节研究太阳风的起源开辟了道路"。太阳轨道器上的仪器包括重离子传感器(HIS),该传感器部分由密歇根大学气候与空间科学和工程系空间物理研究实验室的研究人员和工程师开发。该传感器旨在测量太阳风中的重离子,从而确定太阳风的来源。"太阳的每个区域都可能有独特的重离子组合,这决定了太阳风流的化学成分。"密歇根大学气候与空间科学和工程学教授、重离子传感器副首席研究员苏珊-莱普里(Susan Lepri)说:"由于太阳风的化学成分在向太阳系外传播的过程中保持不变,我们可以利用这些离子作为指纹,确定太阳大气下部特定太阳风流的来源。"太阳风中的电子由电子分析仪系统(EAS)测量,该系统由伦敦大学洛杉矶分校穆拉德空间科学实验室开发,亚德利博士是该实验室的荣誉研究员。伦敦大学洛杉矶分校的克里斯托弗-欧文教授说:"仪器团队花了十多年的时间设计、制造和准备发射传感器,并计划如何以最佳方式协调运行这些传感器。因此,现在我们非常高兴地看到这些数据汇总在一起,揭示出太阳的哪些区域正在推动缓慢的太阳风及其变化。"质子-阿尔法传感器(PAS)用于测量风速,由位于法国图卢兹的保罗-萨巴蒂埃大学天体物理与行星学研究所设计开发。这些仪器共同组成了太阳轨道器上的太阳风分析仪传感器套件,UCL 的克里斯托弗-欧文教授是该套件的首席研究员。谈到未来的研究计划,Yardley 博士说:"到目前为止,我们只以这种方式分析了太阳轨道器在这一特定区间的数据。利用太阳轨道器研究其他情况,并与其他近距离任务(如美国宇航局的帕克太阳探测器)的数据集进行比较,将是非常有趣的。"详细介绍这项研究的论文将于今天发表在《自然-天文学》上。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

埃隆·马斯克证实太阳风暴影响了SpaceX的"星链"卫星

埃隆·马斯克证实太阳风暴影响了SpaceX的"星链"卫星 据美国国家海洋和大气管理局(NOAA)称,5 月 9 日,太阳开始发生一种被称为 CME 或日冕物质抛射的事件。根据国家海洋和大气管理局的说法,这些抛射物预计将从昨天开始到达地球,并在整个星期天继续对地球产生影响。在低地球轨道(LEO)运营星链(Starlink)卫星星座的太空探索技术公司(SpaceX)昨天向低地球轨道发射了新一批卫星。其中包括一批造价高昂的直达蜂窝卫星,这些卫星旨在将覆盖范围直接传送到用户的智能手机或移动终端。在这次发射中,SpaceX 冒着地磁暴的风险发射了航天器,其主管在 X 上表示,卫星在部署到其轨道高度之前会花些时间。2022 年早些时候的一场风暴摧毁了数十颗"星链"卫星。太空探索技术公司(SpaceX)坚持其定期更新的政策,随后分享说, 新发射的卫星在风暴后未能退出安全模式。据该公司称,出现这种异常情况是因为大气阻力过大。SpaceX 首席执行官埃隆-马斯克(Elon Musk)在其社交媒体平台 X 上证实,"星链"(Starlink)正面临着太阳物质对地球的冲击。据他称,这场风暴是 SpaceX 公司长期以来所见过的"最大"风暴之一。马斯克补充说,虽然他的卫星"承受了很大的压力",但它们仍能保持良好状态。X 上的多位用户还分享了网速测试图片,显示风暴对 Starlink 网络造成了压力。其他人补充说,Starlink 应用程序告诉他们服务"下降",SpaceX 正在调查这个问题。为了保持快速发射卫星的步伐,SpaceX 将于明天发射另一批 Starlink 卫星。这次发射将于当地时间傍晚从佛罗里达州卡纳维拉尔角太空站进行。发射时间的设定似乎是为了避免CME对地球造成影响。 ... PC版: 手机版:

封面图片

太阳风暴在播种旺季摧毁了农民的拖拉机GPS系统

太阳风暴在播种旺季摧毁了农民的拖拉机GPS系统 上周末,太阳风暴将极光带到了美国大部分地区,并在播种季节的关键时刻破坏了拖拉机和农业设备中关键的 GPS 和精准农业功能。中断导致许多农民暂时完全停止了播种作业。约翰迪尔的一家连锁经销商警告农民,拖拉机使用的一些系统的准确性“极度受损”,并且根据短信和经销商发布的更新,在不准确性期间种植农作物的农民在收获时将面临问题。这些故障凸显了现代拖拉机在卫星干扰面前的脆弱性。具体来说,部分 GPS 系统暂时离线。这导致实时动态(RTK)定位系统出现间歇性连接和精度问题。该系统与现代拖拉机和农业设备中的约翰迪尔“StarFire”接收器相连。RTK 系统利用 GPS 加上来自地面固定点的不断更新的“校正”数据流,以实现种植作物、耕田、喷洒肥料和除草剂等的厘米级定位精度。

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人