免疫细胞携带着对早年疼痛的"持久记忆"

免疫细胞携带着对早年疼痛的"持久记忆" 现在,辛辛那提儿童医院的专家们领导的研究指出了产生这种持久疼痛记忆的基因变化是如何以及在哪里发生的。根据他们发表在《细胞报告》(Cell Reports)杂志上的研究,关键的变化发生在发育中的巨噬细胞免疫系统的主要元素之一。"我们的实验有助于进一步证实疼痛记忆如何长期影响女性新生儿。数据表明,早年受伤后巨噬细胞中发生了表观遗传变化(出生后发生的变化与遗传基因变异的关系),这反过来又促进了对生命后期发生的其他伤害更强烈的疼痛反应,"通讯作者、辛辛那提儿童医院儿科疼痛研究中心副主任迈克尔-詹考斯基(Michael Jankowski)博士说。辛辛那提儿童医院的专家在《细胞报告》(Cell Reports)上发表的一项研究显示,早年的伤害会在基因层面上改变人体疼痛反应系统的发育方式,从而形成疼痛"记忆",影响多年后对伤害的反应。图片来源:《细胞报告》和辛辛那提儿童医院亚当-杜森(Adam Dourson)博士是这项研究的第一作者,现就职于圣路易斯华盛顿大学。实验结果表明,雄性小鼠在经历了类似的早期伤害后,也会出现同样的表观遗传变化,但却不会像雌性小鼠那样保持长期的疼痛记忆。进一步的测试还表明,在人类巨噬细胞中也能发现一种名为p75NTR 的基因发生了变化。在雌性小鼠身上,疼痛记忆效应在最初受伤后100多天才被检测到。切口导致骨髓中的干细胞产生巨噬细胞,这些巨噬细胞被"激活",对损伤做出更强烈的反应,进而增加疼痛。对于人类来说,类似的时间框架大约为 10-15 年。Jankowski说:"让我们感到惊讶的是,单个局部损伤如何如此显著地改变了全身巨噬细胞的表观遗传学/转录组景观。"对新生儿疼痛记忆的这一新认识强调了仍在发育中的新生儿免疫系统的基因活动与成人成熟系统之间存在的根本差异。这意味着,要确定外科医生和护理团队如何调整新生儿和女婴的恢复护理管理方式将变得非常复杂。"仅仅改变止痛药的剂量可能并不能解决问题。既要控制疼痛,又要尽量减少现有药物可能产生的有害副作用,这两者之间总要保持平衡。相反,我们的研究结果表明,有必要开发特异性更强、靶向性更好的治疗方法,以防止巨噬细胞对损伤做出反应而重新编程,"Jankowski说。需要开展更多的研究,利用这些新信息来开发控制免疫"疼痛记忆"的疗法。在这项研究中,阻断幼鼠体内的 p75NTR 受体确实削弱了巨噬细胞与感觉神经元交流的能力,并部分防止了长时间的类似疼痛的行为。然而,类似的方法能否安全地用于靶向人类巨噬细胞,目前仍不清楚。新兴技术似乎能够特异性地阻断巨噬细胞中的p75NTR受体,但在这种方法进入人体临床试验之前,还需要进行更多的研究。编译来源:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

Science子刊:新生儿T细胞并非成人T细胞的弱化版

Science子刊:新生儿T细胞并非成人T细胞的弱化版 来自健康供体免疫系统的成体 T 的扫描电子显微镜照片。图片来源:美国国立卫生研究院这项研究成果于2月23日发表在《Science Immunology》杂志上,由康奈尔大学微生物学和免疫学系副教授Brian Rudd和分子生物学和遗传学系教授Andrew Grimson共同领导。成人T细胞在识别抗原、形成免疫记忆和应答重复感染等方面的表现优于新生儿T细胞,这导致人们相信婴儿的T细胞只是成人T细胞的弱化版本。但在COVID-19大流行期间,许多人对婴儿没有患病感到惊讶,从而对这种长期存在的观点提出了质疑。研究人员对了解这些与年龄相关的差异很感兴趣,他们发现,新生儿T细胞参与了免疫系统中不需要抗原识别的部分:免疫系统的先天部分。成人T细胞采用适应性免疫来识别特定病菌,然后再与之斗争,而新生儿T细胞则被与先天免疫相关的蛋白质激活。Brian Rudd表示:“我们的论文表明,新生儿T细胞并没有受损,它们只是与成人T细胞不同,这些差异可能反映了在生命不同阶段对宿主最有用的功能类型。”新生儿T细胞可以参与免疫系统的先天部分。这使得新生儿T细胞能做一些成人T细胞做不到的事情:在感染的最初阶段做出反应,抵御各种未知的细菌、寄生虫和病毒。“我们知道,新生儿T细胞对同一病原体重复感染的保护能力不及成人T细胞。不过实际上,新生儿T细胞具有更强的保护宿主免受早期感染的能力,”Rudd谈道。“因此,不可能说成人T细胞比新生儿T细胞好,或者新生儿T细胞比成人T细胞好。它们只是功能不同而已。”在后续研究中,Rudd想要研究人类成年后持续存在的新生儿T细胞。“我们想了解新生儿T细胞相对数量的变化如何影响成年人对感染的易感性和疾病的结局,”他说。 ... PC版: 手机版:

封面图片

研究发现癌症可以在没有基因突变的情况下发生

研究发现癌症可以在没有基因突变的情况下发生 虽然已有研究描述了这些过程对癌症发展的影响,但这是科学家们首次证明基因突变并非癌症发病的必要条件。这一发现迫使我们重新考虑 30 多年来一直认为癌症主要是遗传疾病的理论,即癌症必然是由基因组水平上累积的DNA变异引起的。通过降低多聚核蛋白的表达水平而获得肿瘤的例子。左边是正常发育过程中眼睛前体组织的例子。右图是通过降低多聚核蛋白的表达水平而诱发的肿瘤。DNA 被染成蓝色。位于细胞末端的一种蛋白质被标记为绿色,以显示细胞在组织中的组织方式。肿瘤中失去了正常的组织结构。比例尺:100 微米。图片来源: Giacomo Cavalli为了证明这一点,研究小组重点研究了能改变基因活动的表观遗传因素。通过在果蝇体内造成表观遗传失调,然后将细胞恢复到正常状态,科学家们发现基因组的部分功能仍然失调。这种现象会诱发一种肿瘤状态,这种肿瘤状态会自主维持并继续发展,即使导致肿瘤的信号已经恢复,这些细胞的癌变状态仍会保持在记忆中。这些结论将于2024年4月24日发表在《自然》杂志上,为肿瘤学开辟了新的治疗途径。说明在人类遗传学研究所(法国国家科学研究中心/蒙彼利埃大学)工作。表观遗传学研究的是在相同的 DNA 序列下,不同基因表达谱的遗传机制。基因组被定义为细胞或生物体内所含的遗传物质集合,也就是整个 DNA 序列。科学家们重点研究了被称为多聚核蛋白的表观遗传因子,它们调控着关键基因的表达,在许多人类癌症中都出现了失调。当这些蛋白被实验性地移除时,目标基因的活性就会被打乱:一些基因可以激活自身的转录并自我维持。当多聚核糖蛋白重新整合到细胞中时,一部分基因会对这些蛋白产生抗性,并在细胞分裂过程中保持失调,从而使癌症继续发展。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

《.细胞 》

《.细胞 》 简介:生物体的基本结构和功能单位,由细胞膜、细胞质与遗传物质构成,承担新陈代谢、能量转换及增殖分化等核心生命活动。动植物细胞在结构上存在差异,如植物特有细胞壁与叶绿体,而动物细胞依赖线粒体供能。 亮点:微观层面揭示生命运作机制,推动医学、基因工程及再生技术突破,例如干细胞治疗与CRISPR基因编辑技术均以细胞研究为基础。 标签:#生物学基础 #生命科学 #细胞结构 #干细胞技术 #基因编辑 链接:https://pan.quark.cn/s/db6027d9648c

封面图片

科学家发现前所未闻的慢性病毒感染"游侠"免疫钥匙

科学家发现前所未闻的慢性病毒感染"游侠"免疫钥匙 人类免疫系统的一个未解之谜是,为什么一种被称为 B 细胞的细胞能够保留对过去感染的记忆确保我们能够抵御曾经经历过的疾病却往往只有微弱的能力保护我们免受持续感染?莫纳什大学生物医学发现研究所的研究人员发现了慢性病毒感染如何诱导一种以前未知的免疫 B 记忆细胞,这种细胞不会产生大量抗体,从而基本上解开了这个谜团。由金-古德-雅各布森教授和露西-库珀博士领导的研究小组还确定了抗病毒和抗癌药物等疗法在免疫反应期间的最有效时间,以更好地促进免疫记忆细胞的发育。"我们发现了一种以前未知的细胞,它是由慢性病毒感染产生的。"古德-雅各布森教授说:"我们还确定,早期治疗干预对阻止这种记忆细胞的形成最有效,而晚期干预则无效。"库珀博士认为,慢性病毒感染会改变我们形成有效的长期保护性抗体反应的能力,但这种情况是如何发生的还不得而知。她说:"未来,这项研究可能会产生新的治疗目标,目的是减少慢性传染病对全球健康的破坏性影响,特别是那些目前无法通过疫苗预防的疾病。揭示这种新的免疫记忆细胞类型及其表达的基因,使我们能够确定如何以其为治疗靶点,以及这是否会带来更好的抗体反应"。研究小组还在研究这一人群是否是Long-COVID 的特征,这将导致一些人在病毒消散后很长时间内抵御 COVID-19 感染症状的能力下降。编译自:ScitechDaily ... PC版: 手机版:

封面图片

研究发现免疫细胞可以被用于治疗几乎所有的疾病

研究发现免疫细胞可以被用于治疗几乎所有的疾病 传统上,人们认为Tregs是只存在于人体特定部位的专业细胞群。然而,英国剑桥大学科学家的一项新研究推翻了这一传统观点,对治疗引发免疫反应的各种疾病和损伤具有重要意义。大学病理学系的阿德里安-利斯顿(Adrian Liston)教授是这项研究的通讯作者,他说:"很难想象有哪种疾病、伤害或注射不涉及某种免疫反应,我们的发现确实改变了我们控制这种反应的方式。我们发现了免疫系统的新规则。这支'统一的治疗大军'无所不能修复受伤的肌肉、让脂肪细胞对胰岛素做出更好的反应、让毛囊重新生长。想到我们可以用它来治疗如此广泛的疾病,这真是太棒了:它有可能被用于治疗几乎所有的疾病。"淋巴器官是免疫系统不可或缺的组成部分,负责制造淋巴细胞,这是一种包括 T 细胞在内的白细胞。T 细胞在骨髓中开始生命,然后转移到胸腺(位于胸部中上部的器官),在那里成熟为特化亚群,包括 Tregs。一旦完全成熟,T 细胞就会输出到外周淋巴组织和器官,如脾脏、扁桃体和淋巴结(有些会进入血液)。人们认为,Tregs 会留在那里"待命",直到免疫系统发出召唤。为了验证这一点,研究人员分析了小鼠48种不同组织中存在的Tregs,包括淋巴组织、非淋巴组织以及与肠道相关的组织。他们在所有组织类型中都发现了Tregs,这表明Tregs并不是局限于淋巴组织的特化细胞群,而是在身体各处移动,在需要的部位执行修复功能。利斯顿说:"既然我们知道这些调节性T细胞存在于人体的各个部位,原则上我们就可以开始针对单个器官进行免疫抑制和组织再生治疗这与目前的治疗方法相比是一个巨大的进步,因为目前的治疗方法就像用大锤敲打人体一样。"目前的抗炎药物治疗的是全身而不仅仅是发炎的组织,它们抑制了人体的整个免疫系统,使人容易受到感染。研究人员测试了他们之前开发的一种药物,这种药物能在小鼠体内将Tregs吸引到特定器官或组织,增加它们的数量,并激活它们来抑制免疫反应,促进愈合。研究人员说,根据他们的研究结果,有可能通过单独关闭该区域的免疫反应来修复特定部位的损伤。"通过提高人体目标区域调节性T细胞的数量,我们可以帮助人体更好地进行自我修复或管理免疫反应,"利斯顿说。"在许多疾病中,我们都希望关闭免疫反应并启动修复反应,例如多发性硬化症等自身免疫性疾病,甚至许多传染性疾病。"研究人员正在筹集资金,准备成立一家独立公司。未来几年,他们的目标是通过开展人体临床试验来检验他们的研究成果。这项研究发表在《免疫》杂志上。 ... PC版: 手机版:

封面图片

新型试验小鼠拥有100%功能性人类免疫系统和近似人类肠道微生物群

新型试验小鼠拥有100%功能性人类免疫系统和近似人类肠道微生物群 德克萨斯大学圣安东尼奥健康科学中心的研究人员成功地改造出了一种具有与人类相同免疫反应的小鼠,而这正是之前许多研究人员失败的地方。虽然小鼠在研究中很常见,而且被认为是最好的工作动物之一,但它们远非完美的人类替代品。一个主要的挑战是小鼠体内的许多基因与人类基因不同,因此它们的免疫系统与我们的免疫系统反应截然不同。这种新型小鼠被称为 TruHuX或 THX,它将使研究障碍成为过去。这种小鼠拥有功能完备的人体免疫系统,最终会像我们任何人一样对治疗做出反应。领导这项开创性研究的医学博士保罗-卡萨利(Paolo Casali)说:"THX 小鼠为人类免疫系统研究、人类疫苗开发和疗法测试提供了一个平台。"那么,这对医学研究之外的所有人意味着什么呢?它有可能大大加快药物和免疫疗法的研发速度,缩短"试验和出错"的时间,让科学家们能够在对疗效和安全性更有信心的情况下将治疗方法用于人体试验。卡萨利还认为,THX 小鼠可以取代目前在非人灵长类动物身上进行的免疫学和微生物学测试。小鼠还为新的癌症免疫疗法、细菌和病毒疫苗开发以及疾病建模打开了大门。在未来的某个时刻,技术很可能会促进复杂的人工模型的创造,以取代动物进行医学测试,但遗憾的是,在此之前,它仍然是药物开发和疾病研究的重要组成部分。几十年来,科学家们一直在努力完善人源化小鼠。第一个模型是在 20 世纪 80 年代设计的,用于模拟人类艾滋病病毒感染和机体对艾滋病病毒的反应,现在仍然是研究的重要组成部分。迄今为止,科学家们通过向免疫缺陷小鼠注射人类外周淋巴细胞、未成熟造血干细胞或其他人类细胞来建立这种模型。但这些小鼠的寿命往往很短,会因"人性化"而出现一系列健康问题,而且与其他小鼠模型存在同样的问题,即它们的免疫系统会做出与人类截然不同的反应。卡萨利的团队还从免疫缺陷小鼠(NSG W41突变体)开始,通过动物左心室注射从脐带血中提纯的人类干细胞。经过数周时间让移植细胞沉淀后,再用17b-雌二醇(E2)雌激素对小鼠进行激素调节。研究小组之前的研究发现,这种强效雌激素能促进干细胞存活和淋巴细胞分化,并激活抗体以应对病毒和细菌。归根结底,THX 是一种"超人类"小鼠,拥有完整的人类免疫系统淋巴结、生殖中心、胸腺人类上皮细胞、人类 T 淋巴细胞和 B 淋巴细胞、记忆性 B 淋巴细胞和浆细胞而且可以做出与人类相同的反应。研究小组目前正在利用 THX 小鼠更好地了解人类对 SARS-CoV-2 的免疫反应,并研究参与人类浆细胞活性及其抗体反应的表观遗传因素,这有可能开启新的病毒和癌症疗法。这项研究发表在《自然-免疫学》杂志上。 ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人