生数科技联合清华发布视频大模型Vidu 全面对标Sora

生数科技联合清华发布视频大模型Vidu 全面对标Sora 据介绍,Vidu不仅能够模拟真实物理世界,还拥有丰富想象力,具备多镜头生成、时空一致性高等特点。Vidu是自Sora发布之后全球率先取得重大突破的视频大模型,性能全面对标国际顶尖水平,并在加速迭代提升中。与Sora一致,Vidu能够根据提供的文本描述直接生成长达16秒的高质量视频。值得一提的是,短片中的片段都是从头到尾连续生成,没有明显的插帧现象,从这种“一镜到底”的表现能够推测出,Vidu采用的是“一步到位”的生成方式,与Sora一样,文本到视频的转换是直接且连续的,在底层算法实现上是基于单一模型完全端到端生成,不涉及中间的插帧和其他多步骤的处理。 ... PC版: 手机版:

相关推荐

封面图片

快手发布国内首个效果对标Sora的视频生成大模型“可灵”,现已开放邀测

快手发布国内首个效果对标Sora的视频生成大模型“可灵”,现已开放邀测 近日,快手“可灵”视频生成大模型官网正式上线。据介绍,可灵大模型为快手AI团队自研,基于快手在视频技术方面的多年积累,采用Sora相似的技术路线,结合多项自研技术创新,效果对标Sora。可灵大模型不仅具备强大的概念组合能力和想象力,还能够生成大幅度的合理运动、模拟物理世界特性。其生成的视频分辨率高达1080p,时长最高可达2分钟(帧率30fps),且支持自由的宽高比。目前,可灵大模型已在快影App开放邀测体验。(36氪) 标签: #快手 #Sora #可灵 频道: @GodlyNews1 投稿: @GodlyNewsBot

封面图片

OpenAI 发布介绍 Sora,文本转视频模型

OpenAI 发布介绍 Sora,文本转视频模型 OpenAI 发布介绍 Sora,文本转视频模型。Sora 能够创造出长达 60 秒的视频,展现高度详尽的场景、复杂的摄像机运动,以及多个角色充满活力的情感。 了解更多,请访问

封面图片

剑指 Sora:Picsart AI 团队联合发布 StreamingT2V 模型,可生成 1200 帧 2 分钟视频

剑指 Sora:Picsart AI 团队联合发布 StreamingT2V 模型,可生成 1200 帧 2 分钟视频 Picsart AI Resarch 等团队联合发布了 StreamingT2V,可以生成长达 1200 帧、时长为 2 分钟的视频,同时质量也很不错。并且,作者表示,两分钟并不是模型的极限,就像之前 Runway 的视频可以延长一样,StreamingT2V 理论上可以做到无限长。 同时,作为开源世界的强大组件,StreamingT2V 可以无缝兼容 SVD 和 animatediff 等模型。不但比 Sora 长,而且免费开源! 论文地址: Demo 试用: 开源代码: 频道:@kejiqu 群组:@kejiquchat

封面图片

奥尔特曼选取网友提示词 用OpenAI新款大模型Sora生成视频

奥尔特曼选取网友提示词 用OpenAI新款大模型Sora生成视频 一位时髦女士漫步在东京街头,周围是温暖闪烁的霓虹灯和动感的城市标志。一名年约三十的宇航员戴着红色针织摩托头盔展开冒险之旅,电影预告片呈现其穿梭于蓝天白云与盐湖沙漠之间的精彩瞬间,独特的电影风格、采用35毫米胶片拍摄,色彩鲜艳。竖屏超近景视角下,这只蜥蜴细节拉满:OpenAI表示,公司正在教授人工智能理解和模拟运动中的物理世界,目标是训练出能够帮助人们解决需要与现实世界互动的问题的模型。在此,隆重推出文本到视频模型Sora。Sora可以生成长达一分钟的视频,同时保证视觉质量和符合用户提示的要求。OpenAI创始人兼CEOSam Altman(奥尔特曼)太会玩了,让网友评论回复Prompt(大语言模型中的提示词),他选一些用Sora生成视频。截至发稿,奥尔特曼连发多条根据网友提示词生成的视频,包括不同动物在海上进行自行车比赛、发布自制面疙瘩烹饪教学视频的祖母、两只金毛犬在山顶做播客、日落时分火星上进行的一场无人机竞赛等。但这些视频时长为9秒至17秒不等。技术层面,Sora采用扩散模型(diffusion probabilistic models)技术,基于Transformer架构,但为了解决Transformer架构核心组件注意力机制的长文本、高分辨率图像处理等问题,扩散模型用可扩展性更强的状态空间模型(SSM)主干替代了传统架构中的注意力机制,可以使用更少的算力,生成高分辨率图像。此前Midjourney与Stable Diffusion的图像与视频生成器同样基于扩散模型。同时,Sora也存在一定的技术不成熟之处。OpenAI表示,Sora可能难以准确模拟复杂场景的物理原理,可能无法理解因果关系,可能混淆提示的空间细节,可能难以精确描述随着时间推移发生的事件,如遵循特定的相机轨迹等。根据OpenAI关于Sora的技术报告《Video generation models as world simulators》(以下简称报告),跟大语言模型一样,Sora也有涌现的模拟能力。OpenAI方面在技术报告中表示,并未将Sora单纯视作视频模型,而是将视频生成模型作为“世界模拟器”,不仅可以在不同设备的原生宽高比直接创建内容,而且展示了一些有趣的模拟能力,如3D一致性、长期一致性和对象持久性等。目前Sora能够生成一分钟的高保真视频,OpenAI认为扩展视频生成模型是构建物理世界通用模拟器的一条有前途的途径。报告指出,OpenAI研究了在视频数据上进行大规模训练的生成模型。具体而言,联合训练了文本条件扩散模型,该模型可处理不同持续时间、分辨率和长宽比的视频和图像。OpenAI利用了一种基于时空补丁的视频和图像潜在代码的变压器架构。最大的模型Sora能够生成一分钟的高保真视频。结果表明,扩展视频生成模型是构建通用物理世界模拟器的有前途的途径。报告重点介绍了OpenAI将各类型视觉数据转化为统一表示的方法,这种方法能够对生成模型进行大规模训练,并对Sora的能力与局限进行定性评估。先前的大量研究已经探索了使用多种方法对视频数据进行生成建模,包括循环网络、生成对抗网络、自回归转换器和扩散模型。这些研究往往只关注于狭窄类别的视觉数据、较短的视频或固定大小的视频。而Sora是一个通用的视觉数据模型,它能够生成跨越不同时长、纵横比和分辨率的视频和图像,甚至能够生成长达一分钟的高清视频。OpenAI从大型语言模型中汲取灵感,这些模型通过训练互联网规模的数据获得通用能力。LLM范式的成功在一定程度上得益于令牌的使用,这些令牌巧妙地统一了文本的不同模式代码、数学和各种自然语言。在这项工作中,OpenAI考虑视觉数据的生成模型如何继承这些优势。虽然LLM有文本令牌,但Sora有视觉补丁。之前已经证明,补丁是视觉数据模型的有效表示。补丁是一种高度可扩展且有效的表示,可用于在多种类型的视频和图像上训练生成模型。Sora支持采样多种分辨率视频,包括1920x1080p的宽屏视频、1080x1920的竖屏视频以及介于两者之间的所有分辨率。这使得Sora能够直接以原生纵横比为不同的设备创建内容。同时,它还允许在生成全分辨率内容之前,使用相同的模型快速制作较小尺寸的内容原型。 ... PC版: 手机版:

封面图片

卧槽,Open AI的大招终于来了,发布视频生成模型 Sora,从演示来看生成时长、运动幅度以及稳定性均碾压现在的所有生

卧槽,Open AI的大招终于来了,发布视频生成模型 Sora,从演示来看视频生成时长、运动幅度以及稳定性均碾压现在的所有视频生成模型。 Sora能够创作出长达一分钟的视频,不仅保证了视频的视觉质量,还能准确响应用户的指令。将在今天想有限的访问者开放。 模型优势: Sora能够创造出包括多个角色、特定动作类型以及对主题和背景的精确细节描述的复杂场景。这款模型不仅能理解用户在指令中提出的需求,还能洞察这些元素在现实世界中是如何存在和表现的。 这款模型对语言的理解非常深刻,使其能够精准地识别用户的指令,并创造出表情丰富、情感生动的角色。此外,Sora还能在同一视频内制作多个镜头,同时确保角色的形象和整体的视觉风格保持一致。 工作原理: Sora是一种扩散模型(diffusion model),它通过从类似静态噪声的视频出发,逐步去除噪声,从而在多个步骤中生成视频。 Sora不仅能一次生成整个视频,还能延长已有视频的长度。我们通过使模型能够预见多个画面帧,解决了确保视频中主题即使暂时离开画面也能保持一致的难题。 Sora采用了类似于GPT模型的变压器架构(transformer architecture),这为其带来了优异的扩展性能。 在Sora中,视频和图像被表示为一系列小块数据,称为“补丁”(patches),每个补丁都类似于GPT中的“令牌”(token)。通过统一数据表示方式,我们能够在之前不可能的更广泛视觉数据范围内训练扩散变压器,包括不同的时长、分辨率和长宽比。 Sora基于DALL·E和GPT模型的研究成果。它采用了DALL·E 3中的重标记技术(recaptioning technique),为视觉训练数据生成详细描述的标题。因此,模型能更准确地遵循用户在生成视频中的文字指令。 除了能从文字指令生成视频外,Sora还能将现有静止图像转化为视频,准确地动态展现图像内容并关注细节。此外,它还能扩展现有视频或填补视频中缺失的画面。 了解更多:

封面图片

OpenAI 推出文本到视频人工智能模型 Sora

OpenAI 推出文本到视频人工智能模型 Sora 根据 OpenAI 的介绍博文,Sora 能够创建"具有多个角色、特定运动类型以及主体和背景准确细节的复杂场景"。该公司还指出,该模型能够理解物体"在物理世界中的存在方式",还能"准确解释道具并生成表达生动情感的引人注目的角色"。该模型还能根据静态图像生成视频,以及在现有视频中填充缺失的帧或扩展视频。OpenAI 的博文中包含的 Sora 生成的演示包括淘金热时期加利福尼亚州的空中场景、从东京火车内部拍摄的视频等。许多演示都有人工智能的痕迹比如在一段博物馆的视频中,地板疑似在移动。OpenAI 表示,该模型"可能难以准确模拟复杂场景的物理现象",但总体而言,演示结果令人印象深刻。几年前,像 Midjourney 这样的文本到图像生成器在模型将文字转化为图像的能力方面处于领先地位。但最近,视频技术开始飞速进步:Runway 和 Pika 等公司都展示了自己令人印象深刻的文字转视频模型,而Google的 Lumiere 也将成为 OpenAI 在这一领域的主要竞争对手之一。与 Sora 类似,Lumiere 也为用户提供了文字转换视频的工具,还能让用户通过静态图像创建视频。Sora 目前只对"红队"人员开放,他们负责评估模型的潜在危害和风险。OpenAI 还向一些视觉艺术家、设计师和电影制片人提供访问权限,以获得反馈意见。它指出,现有模型可能无法准确模拟复杂场景的物理现象,也可能无法正确解释某些因果关系。本月早些时候,OpenAI 宣布将在其文本到图像工具 DALL-E 3 中添加水印,但指出这些水印"很容易去除"。与其他人工智能产品一样,OpenAI 将不得不面对人工智能逼真视频被误认为是真实视频的后果。 ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人