科学家用合成生物学和三维打印技术打造可编程的生命材料

科学家用合成生物学和三维打印技术打造可编程的生命材料 从第 1 天(左)到第 14 天(右),3D 打印在水凝胶中的植物细胞生长并开始繁茂成黄色的细胞簇。图片来源:改编自 ACS Central Science 2024,DOI: 10.1021/acscentsci.4c00338最近,研究人员一直在开发工程活体材料,主要依靠细菌和真菌细胞作为活体成分。然而,植物细胞的独特特性激起了将其用于工程植物活体材料(EPLMs)的热情。以前,科学家们创造的基于植物细胞的材料结构相当简单,功能有限。余子怡、狄振高及其同事希望改变这种状况,他们制作了形状复杂的 EPLM,其中含有可定制行为和功能的基因工程植物细胞。24 天后,植物细胞在两种不同的生物墨水中产生的颜色在这种叶形工程活体材料中清晰可见。来源:改编自 ACS Central Science 2024,DOI: 10.1021/acscentsci.4c00338研究人员将烟草植物细胞与含有农杆菌的明胶和水凝胶微粒混合,农杆菌是一种常用于将DNA片段转入植物基因组的细菌。然后将这种生物墨水混合物在平板上或装有另一种凝胶的容器内进行 3D 打印,形成网格、雪花、树叶和螺旋等形状。接着,用蓝光固化打印材料中的水凝胶,使结构硬化。在随后的 48 小时内,EPLMs 中的细菌将 DNA 转移到生长中的烟草细胞上。然后他们用抗生素清洗这些材料,以杀死细菌。在接下来的几周里,随着植物细胞在 EPLMs 中生长和复制,它们开始根据转移的 DNA 生成蛋白质。在这项概念验证研究中,转移的DNA使烟草植物细胞能够产生绿色荧光蛋白或贝特类色素红色或黄色的植物色素,可作为天然着色剂和膳食补充剂。通过用两种不同的生物墨水打印叶形 EPLM一种墨水沿叶脉产生红色素,另一种墨水在叶片的其他部分产生黄色素研究人员表明,他们的技术可以产生复杂的、空间可控的多功能结构。研究人员说,这种 EPLM 结合了生物体的特征和非生物物质的稳定性和耐久性,可以用作细胞工厂,生产植物代谢物或药物蛋白质,甚至用于可持续建筑应用。编译来源:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

科学家实现利用脂肪组织进行3D生物打印

科学家实现利用脂肪组织进行3D生物打印 一种使用脂肪组织的新型 3D 生物打印方法可以打印分层的活体皮肤和毛囊,有望改善重建手术和毛发生长治疗的效果。 这项专利技术在老鼠身上进行了成功的测试,可以彻底改变治疗皮肤损伤和增强美容手术的方法。该团队的研究结果发表在《生物活性材料》上。 美国专利商标局于二月份授予该团队一项在本研究中开发和使用的生物打印技术的专利。宾夕法尼亚州立大学工程科学与力学、生物医学工程和神经外科教授易卜拉欣·T·奥兹博拉特 (Ibrahim T. Ozbolat) 表示:“用于纠正因受伤或疾病而造成的面部或头部创伤的重建手术通常并不完美,会导致疤痕或永久性脱发。通过这项工作,我们证明了生物打印的全层皮肤具有在老鼠身上生长毛发的潜力。 这距离实现更自然、更美观的人类头部和面部重建又近了一步。”他领导了开展这项工作的国际合作。虽然科学家之前已经对薄层皮肤进行了 3D 生物打印,但 Ozbolat 和他的团队是第一个在术中打印多个皮肤层(包括最底层或皮下组织)的完整生命系统的。 研究人员表示,术中指的是在手术期间打印组织的能力,这意味着该方法可用于更立即、无缝地修复受损皮肤。 顶层作为可见皮肤的表皮在中间层的支撑下自行形成,因此不需要打印。 皮下组织由结缔组织和脂肪组成,为头骨提供结构和支撑。宾夕法尼亚州立大学博士后研究员 Miji Yeo 检查 3D 打印机上的生物墨盒,该打印机专为术中打印皮肤层而开发。 图片来源:米歇尔·比克斯比/宾夕法尼亚州立大学“皮下组织直接参与干细胞变成脂肪的过程,”奥兹博拉特说。 “这个过程对于包括伤口愈合在内的几个重要过程至关重要。 它还在毛囊循环中发挥作用,特别是促进头发生长。”皮肤生物打印的突破研究人员首先从宾夕法尼亚州立大学健康米尔顿·赫尔希医疗中心接受手术的患者身上获取人体脂肪或脂肪组织。 合作者迪诺·J·拉夫尼克 (Dino J. Ravnic) 是宾夕法尼亚州立大学医学院整形外科系的外科副教授,他带领他的实验室获得了用于提取细胞外基质的脂肪细胞外基质是分子和蛋白质的网络,为细胞提供结构和稳定性。 组织制造生物墨水的一种成分。Ravnic 的团队还从脂肪组织中获得了干细胞,如果提供正确的环境,干细胞有可能成熟为几种不同的细胞类型,从而制造另一种生物墨水成分。 每个组件都被加载到生物打印机的三个隔室之一中。 第三个隔室充满了凝血溶液,有助于其他成分正确地结合到受伤部位。“这三个隔室使我们能够在精确控制下共同打印基质-纤维蛋白原混合物和干细胞,”Ozbolat 说。 “我们直接打印到损伤部位,目标是形成皮下组织,这有助于伤口愈合、毛囊生成、温度调节等。”他们获得了皮下组织和真皮层,表皮在两周内自行形成。“我们在大鼠身上进行了三组研究,以更好地了解脂肪基质的作用,我们发现基质和干细胞的共同传递对于皮下组织的形成至关重要,”Ozbolat 说。 “它不能仅对细胞或基质有效地起作用它必须同时起作用。”他们还发现皮下组织含有向下生长,这是早期毛囊形成的初始阶段。 研究人员表示,虽然脂肪细胞不直接参与毛囊的细胞结构,但它们参与毛囊的调节和维护。“在我们的实验中,脂肪细胞可能改变了细胞外基质,以更有利于向下生长的形成,”奥兹博拉特说。 “我们正在努力推进这一目标,以控制密度、方向性和生长的方式使毛囊成熟。”奥兹博拉特表示,在创伤的受伤或患病部位精确生长毛发的能力可能会限制自然重建手术的表现。 他说这项工作提供了一条“充满希望的前进道路”,特别是与他实验室的其他项目相结合,包括打印骨骼和研究如何匹配各种肤色的色素沉着。“我们相信这可以应用于皮肤科、毛发移植以及整形和重建手术它可能会带来更加美观的结果,”奥兹博拉特说。“凭借全自动生物打印能力和临床级兼容材料,这项技术可能会对精确重建皮肤的临床转化产生重大影响。”编译自:ScitechDaily ... PC版: 手机版:

封面图片

15年的酝酿 科学家发明可治疗皮肤的"活生物电子学"

15年的酝酿 科学家发明可治疗皮肤的"活生物电子学" 史久云(Jiuyun Shi)拿着他和芝加哥大学科学家团队发明的一个小型装置,该装置将活细胞、凝胶和传感器整合在一起,创造出"活的生物电子学"来治疗皮肤。图片来源:Jiuyun Shi 和 Bozhi 田/芝加哥大学多年来,田博智教授的实验室一直在探索如何将电子领域(通常是刚性、金属和笨重的领域)与人体的柔软、灵活和微妙特性相结合。在最近的研究中,他们创建了一个所谓"活体生物电子学"的原型:活细胞、凝胶和电子学的结合体,可以与活体组织融为一体。这种贴片由传感器、细菌细胞以及由淀粉和明胶制成的凝胶组成。在小鼠身上进行的试验发现,这种装置可以持续监测和改善类似牛皮癣的症状,而且不会刺激皮肤。"这是与传统生物电子学的桥梁,传统生物电子学将活细胞作为治疗的一部分,"该论文的共同第一作者、曾在田的实验室(现为斯坦福大学)攻读博士学位的Jiuyun Shi说。田说:"我们非常激动,因为这已经酝酿了十多年。"研究人员希望这些原理也能应用于身体的其他部位,如心脏或神经刺激。这项研究发表在5月30日的《科学》杂志上。将电子设备与人体配对一直是个难题。虽然心脏起搏器等设备改善了无数人的生活,但它们也有自己的缺点:电子设备往往笨重而僵硬,可能会引起刺激。但田的实验室擅长揭示活细胞和组织与合成材料相互作用背后的基本原理;他们以前的工作包括可以用光控制的微小起搏器,以及可以构成骨植入基础的坚固而柔韧的材料。在这项研究中,他们采用了一种新方法。通常情况下,生物电子学由电子元件本身和一个软层组成,软层的作用是减少电子元件对人体的刺激。但是,田的研究小组想知道,他们是否能通过整合第三个组件(活细胞本身)来增加新的功能。研究小组对某些细菌(如表皮葡萄球菌)的治疗特性很感兴趣,表皮葡萄球菌是一种天然生活在人体皮肤上的微生物,已被证明可以减轻炎症。薄如蝉翼的贴片集成了柔性电子电路、木薯淀粉和明胶制成的凝胶以及有助于治疗皮肤病的友好细菌。图片来源:Jiuyun Shi 和 Bozhi Tian/芝加哥大学他们创造了一种由三个部件组成的装置。框架是一个带有传感器的薄而柔韧的电子电路。它上面覆盖着由木薯淀粉和明胶制成的凝胶,这种凝胶非常柔软,可以模拟组织本身的构成。最后,表皮葡萄球菌微生物被塞进凝胶中。当把设备放在皮肤上时,细菌会分泌能减轻炎症的化合物,而传感器则会监测皮肤的温度和湿度等信号。在对易患牛皮癣样皮肤病的小鼠进行的试验中,症状明显减轻。他们的初步测试持续了一周,但研究人员希望该系统他们称之为ABLE平台(Active Biointegrated Living Electronics)可以使用半年或更长时间。他们说,为了使治疗更方便,该装置可以冻干储存,需要时也可以轻松补水。论文的另一位共同第一作者、实验室的在读博士生 Saehyun Kim 说:"由于治疗效果是由微生物提供的,因此它就像一种活的药物不必再给它加药。"更广泛的应用和未来目标除了治疗牛皮癣,科学家们还设想了一些应用,比如用贴片来加速糖尿病患者的伤口愈合。他们还希望将这种方法推广到其他组织类型和细胞类型。田说:"例如,这能创造出一种胰岛素分泌装置,或者一种与神经元连接的装置吗?有很多潜在的应用。"田说,这是他从近 15 年前担任博士后研究员时就一直怀有的目标,当时他第一次开始试验"义体组织"。他说:"从那时起,我们已经了解了很多基本问题,例如细胞如何与材料对接以及水凝胶的化学和物理,这让我们能够实现这一飞跃。看到它成为现实,我感到非常高兴。"史久云说:"我一直热衷于挑战科学的极限。"我希望我们的工作能为下一代电子设计带来灵感。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

俄罗斯科学家开发牙龈修复新技术 3D生物打印实现突破

俄罗斯科学家开发牙龈修复新技术 3D生物打印实现突破 2024年12月30日星期一 莫斯科2024年12月30日电 莫斯科谢奇诺夫医科大学的科学家利用3D生物打印技术,成功开发了一种修复受损牙龈组织的新方法,为牙科治疗带来革命性突破。 据《今日俄罗斯》报道,研究人员指出,传统人工材料在牙龈修复中的应用效果有限,因其难以在患者体内扎根。而新技术通过使用患者自身细胞、生物相容性聚合物和球形细胞,可以高效修复受损组织。这种方法与患者身体高度兼容,有望成为治疗多种口腔疾病的新选择。 谢奇诺夫医科大学牙科外科学系副教授斯维特兰娜·里宾娜表示,这项技术的优势在于,它使用患者自身细胞培养出活组织,与种植体相比更加自然。“这是世界上首个基于患者细胞的牙龈修复技术,代表了牙科治疗的一项重要突破。” 据介绍,该技术不仅适用于因疾病引发的牙龈损伤修复,还可弥补因受伤或手术造成的组织缺损。目前,这一创新技术正被寄予厚望,或将彻底改变牙龈疾病的治疗方式。

封面图片

首个3D打印的功能性人脑组织能像真实脑组织一样生长

首个3D打印的功能性人脑组织能像真实脑组织一样生长 研究人员用 3D 打印出能像普通脑组织一样生长和运作的脑组织创建一个尽可能接近真实的器官对于探索疾病病理和测试新药的研究至关重要。大脑面临着特殊的挑战,包括在实验室中培育的神经元必须形成功能性连接,而且脑组织需要支持复杂而微妙的结构。威斯康星大学麦迪逊分校(UW-Madison)的研究人员成功地用三维打印技术打印出了能像普通大脑一样生长和运作的脑组织。这项研究的通讯作者张素春说:"这可能是一个非常强大的模型,帮助我们了解人类脑细胞和大脑部分是如何交流的。它可以改变我们看待干细胞生物学、神经科学以及许多神经和精神疾病发病机制的方式。"研究人员的目标是构建分层神经组织,使神经祖细胞(NPC)在层内和层间成熟并形成连接(突触),同时保持结构不变。他们选择了一种主要由纤维蛋白原和凝血酶组成的纤维蛋白水凝胶作为"生物墨水",即用于组织打印的生物材料,因为它与神经细胞具有生物相容性。纤维蛋白原和凝血酶都在凝血过程中发挥作用。纤维蛋白凝胶的高粘度使其难以打印,因此研究人员将其与透明质酸水凝胶混合,放入混合物中的NPC存活和成熟的数量更多,而加入另一种氢使他们的生物墨水比以前使用的生物墨水更柔软。研究人员没有采用传统的垂直叠层三维打印方法(这种方法需要厚层打印坚硬的生物墨水),而是通过水平打印一个薄层或细胞注入凝胶带,将其紧挨另一个薄层或细胞注入凝胶带,从而创建出图案化组织。为了防止打印带混合,研究人员在混合物沉积后立即使用凝血酶作为交联剂。虽然打印的细胞停留在指定的层内,但在打印后的两到五周内,神经元在层内和层间形成了功能性突触连接。张说:"这种组织仍然有足够的结构来支撑在一起,但它又足够柔软,可以让神经元相互生长并开始对话。我们的组织保持相对较薄,这使得神经元很容易从生长介质中获得足够的氧气和养分。"研究人员尝试在生物墨水中使用不同的细胞组合打印脑组织。该研究的第一作者、华大麦迪逊分校张实验室的严元伟研究员"我们打印了大脑皮层和纹状体,我们的发现非常惊人,"张说。"即使我们打印了属于大脑不同部位的不同细胞,它们仍然能够以一种非常特殊和特定的方式相互对话。"研究人员说,他们的方法可以精确控制细胞的类型和排列,而器官组织和其他打印方法则无法做到这一点。而且这种打印技术不需要特殊的设备或培养方法来保持组织的健康,这意味着许多实验室都可以使用这种技术。张说:"我们的实验室非常特别,因为我们能够在任何时候生产几乎任何类型的神经元,然后,我们几乎可以在任何时候以任何方式将它们组合在一起,有一个确定的系统来研究人类大脑网络是如何运作的。研究人员计划对生物墨水和设备进行改进,以便在打印组织中实现特定的细胞定向。"现在,我们的打印机是一台台式商业化打印机,"该研究的主要作者颜元伟说。"我们可以进行一些专门的改进,帮助我们按需打印特定类型的脑组织。"研究人员说,所打印的脑组织可用于研究唐氏综合征的细胞-细胞信号传导、健康组织与受阿尔茨海默氏症影响的组织之间的相互作用、测试新的候选药物,或者只是观察大脑的发育过程。这项研究发表在《细胞干细胞》杂志上。 ... PC版: 手机版:

封面图片

科学家利用模糊光三维打印高质量镜片

科学家利用模糊光三维打印高质量镜片 访问:Saily - 使用eSIM实现手机全球数据漫游 安全可靠 源自NordVPN 研究人员开发了一种名为模糊层析成像的新型 3D 打印方法,可以快速生产出具有商业级光学质量的微透镜。他们使用这种技术打印了一个微型透镜阵列,图中的微型透镜阵列由一组镊子夹持。图片来源:加拿大国家研究理事会丹尼尔-韦伯在光学出版集团(Optica Publishing Group)的高影响力研究期刊《光学》(Optica)上,这些研究人员展示了这种新方法,用它制作了一个毫米大小的平凸透镜,其成像性能与市售玻璃透镜类似。他们还表明,这种方法可以在 30 分钟内生产出可以使用的光学元件。韦伯说:"由于层析 3D 打印机和所使用的材料价格低廉,我们预计这种方法对于经济高效地快速制作光学元件原型非常有价值。此外,层析 3D打印固有的自由形态特性可以让光学设计师用形状复杂的打印光学器件取代多个标准光学器件,从而简化设计。"这项新技术使用定制的投影透镜来模糊用于固化光敏树脂的激光束。这样就产生了光学上光滑的表面,从而可以打印出商业质量的镜片,如左下角所示的镜片。资料来源:加拿大国家研究理事会丹尼尔-韦伯断层体积增材制造是一种相对较新的制造方法,它利用投射光在特定区域固化光敏树脂。它可以在没有任何支撑结构的情况下一次性打印出整个部件。然而,现有的层析成像方法无法直接打印出成像质量的透镜,因为所使用的铅笔状光束会造成条纹,从而导致部件表面出现小棱角。虽然可以使用后处理步骤来创建光滑的表面,但这些方法增加了时间和复杂性,从而失去了与断层打印相关的快速原型制作优势。韦伯博士说:"光学元件的制造成本很高,因为一个正常的透镜需要严格的技术指标,而且制造过程复杂耗时。模糊层析成像技术可用于以低成本的方式进行自由形态设计。随着技术的成熟,它可以更快地制作出新光学设备的原型,这对从商业制造商到车库发明家的任何人都非常有用。"为了测试这种新方法,研究人员首先制作了一个简单的平凸透镜,结果表明它的成像分辨率与具有相同物理尺寸的商用玻璃透镜相当。它还表现出微米级的形状误差、亚纳米级的表面粗糙度和接近玻璃透镜的点展宽函数。他们还利用模糊层析技术制作了一个 3×3 的微透镜阵列,并将其与用传统层析 3D 打印技术打印的阵列进行了比较。他们发现,由于表面粗糙度较大,用传统方法打印的阵列无法对名片成像,但用模糊层析成像技术打印的阵列却可以。此外,研究人员还演示了将球透镜叠印到光纤上,这在以前只能通过一种称为双光子聚合的增材制造技术来实现。目前,他们正致力于通过优化光图案设计方法和将材料参数纳入打印过程来提高组件精度。他们还希望实现打印时间的自动化,使系统足够强大,使其能够用于商业用途。韦伯说:"断层三维打印技术是一个迅速成熟的领域,在许多应用领域都得到了应用。在这里,我们利用这种三维打印方法的内在优势来制造毫米级的光学元件。这样,我们就为光学制造技术增加了一种快速、低成本的替代方法,有可能对未来技术产生影响。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

韩国科学家研制出治疗骨骼破裂的新型“骨绷带”材料

韩国科学家研制出治疗骨骼破裂的新型“骨绷带”材料 骨再生是一个复杂的过程,目前促进骨再生的方法,如移植物和应用生长因子,都面临着费用增加等挑战。然而,随着一种能够促进骨组织发育的压电材料的问世,这一研究取得了突破性进展。由材料科学与工程系(DMSE)Seungbum Hong教授领导的KAIST研究小组于1月25日宣布,利用羟基磷灰石(HAp)独特的成骨能力,开发出了一种生物仿生支架,可在施加压力时产生电信号。这项研究是与全南国立大学聚合生物系统工程系的 Jangho Kim 教授领导的团队合作进行的。HAp 是一种存在于骨骼和牙齿中的基本磷酸钙物质。这种具有生物相容性的矿物质还具有防止蛀牙的作用,常用于牙膏中。骨再生领域的突破以往关于压电支架的研究证实了压电性在促进骨再生和改善各种聚合物基材料的骨融合方面的作用,但在模拟最佳骨组织再生所需的复杂细胞环境方面受到限制。然而,这项研究提出了一种新方法,利用 HAp 独特的成骨能力来开发一种模拟活体骨组织环境的材料。压电和地形生物仿生支架的设计和表征。(a) 通过加入 HAp 的 P(VDF-TrFE)支架提供的电学和地形学线索增强骨再生机制的示意图。(b) 制作过程示意图。资料来源:KAIST 材料成像与集成实验室研究小组开发了一种将 HAp 与聚合物薄膜融合在一起的制造工艺。通过对大鼠进行体外和体内实验,该工艺开发出的柔性独立支架在促进骨再生方面具有显著的潜力。了解骨再生原理研究小组还确定了其支架所依据的骨再生原理。他们利用原子力显微镜(AFM)分析了支架的电特性,并评估了与细胞形状和细胞骨骼蛋白形成有关的详细表面特性。他们还研究了压电性和表面特性对生长因子表达的影响。韩国科学技术院DMSE的Hong教授说:"我们开发出了一种基于HAp的压电复合材料,它可以像'骨绷带'一样加速骨再生。他补充说:"这项研究不仅为生物材料的设计提出了新的方向,而且在探索压电性和表面特性对骨再生的影响方面也具有重要意义。编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人