新研发的CSRD材料局部无序技术有望缩短电池充电时间 增加能量储存能力

新研发的CSRD材料局部无序技术有望缩短电池充电时间 增加能量储存能力 不稳定的电极充电电池是能源转型的关键要素,尤其是在可再生能源越来越多的今天。在多种可充电电池中,锂离子电池是功能最强大、应用最广泛的电池之一。为了使其电气连接,通常使用层状氧化物作为电极。然而,当电池充电时,它们的原子结构会变得不稳定。这最终会影响电池的循环寿命。局部失调为了解决这个问题,代尔夫特理工大学的"电化学能量存储"小组与国际研究人员合作。论文的第一作者是王启迪,他介绍说:"用作锂离子电池阴极材料的层状氧化物是整齐有序的。我们进行了一项结构设计研究,通过改进合成方法在这种材料中引入化学短程无序。因此,它在电池使用过程中变得更加稳定"。有序的层状结构是锂(Li)离子阴极的重要组成部分。然而,在充电过程中,本质上脆弱的缺锂框架很容易受到晶格应变、结构和/或化学机械退化的影响,导致容量迅速下降,从而缩短电池寿命。在此,研究人员报告了一种通过在氧化物阴极中整合化学短程无序(CSRD)来解决这些问题的方法,它涉及晶格中元素在空间维度上的局部分布,跨越几个最近邻间距。这是在结构化学基本原理的指导下,通过改进的陶瓷合成工艺实现的。为了证明其可行性,研究人员展示了 CSRD 的引入如何对层状氧化锂钴阴极的晶体结构产生重大影响。这表现在过渡金属环境及其与氧气的相互作用上,有效防止了锂去除过程中晶体板的有害滑动和结构退化。同时,它还会影响电子结构,从而提高电子导电性。这些特性对锂离子存储能力大有裨益,可显著提高循环寿命和速率能力。此外他们还发现 CSRD 可以通过改进化学共掺杂的方式引入到其他层状氧化物材料中,这进一步说明了 CSRD 在增强结构和电化学稳定性方面的潜力。这些发现为氧化物阴极的设计开辟了新的途径,帮助深入了解了 CSRD 对先进功能材料晶体和电子结构的影响。经过 200 次充电/放电循环后,结构稳定性的提高几乎使电池的容量保持率翻了一番。图片来源:Roy Borghouts Fotografie循环寿命更长,充电时间更短结构稳定性的提高使电池在 200 次充电/放电循环后的容量保持率几乎翻了一番。此外,这种化学短程无序增加了电极中的电荷转移,从而缩短了充电时间。研究小组对锂钴氧化物(LiCoO2)和锂镍锰钴氧化物(NMC811)等成熟的商用阴极展示了这些优势。关键材料这些成果可能会催生新一代锂离子电池,其制造成本更低,寿命期间单位能量储存的二氧化碳排放量更小。研究小组下一步将研究是否可以利用同样的材料设计原理,用不太稀缺的原材料制造阴极。论文的资深作者马尼克斯-瓦格马克(Marnix Wagemaker)说:"钴和镍都是所谓的能源技术关键材料,减少电池中这些材料的使用将是一件好事。"编译来源:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

日本东北大学开发岩盐氧化物阴极材料 适用于可充电镁电池

日本东北大学开发岩盐氧化物阴极材料 适用于可充电镁电池 这项研究表明,镁在岩盐结构中的扩散有了相当大的改善。这是一个关键性进展,因为以往这种结构中的原子密度会阻碍镁迁移。通过加入含有七种不同金属元素的重要混合物,该团队创建了富含稳定阳离子空位的晶体结构,使镁更易于嵌入和提取。这是首次将岩盐氧化物用作RMB阴极材料。研究人员采用了高熵策略,以促进阳离子缺陷激活岩盐氧化物阴极。这一进展还解决了RMB的一个关键问题,即镁在固体材料中传输困难。到目前为止,镁的迁移率在传统阴极材料中(如尖晶石结构材料)需要通过高温来提高。现在,这项研究开发的材料仅在90°C下就能有效工作,从而表明所需的工作温度明显降低。东北大学材料研究所(IMR)教授Tomoya Kawaguchi指出,这项研究具有更广泛的影响。“锂资源稀缺且分布不均,而供应充足的镁为锂离子电池提供了更可持续、更具成本效益的替代品。借助新开发的阴极材料,镁电池将在各种应用中发挥关键作用,包括电网存储、电动汽车和便携式电子设备,为全球向可再生能源转型和减少碳排放做出贡献。”IMR另一位教授Tetsu Ichitsubo表示:“这项研究利用镁的内在优势,并突破了以前的材料局限性。这为开发下一代电池铺平了道路,有望产生重大的技术、环境和社会影响。”总之,在寻求高效、环保的储能解决方案方面,这一突破是向前迈出的重要一步。 ... PC版: 手机版:

封面图片

科学家开发出需要稀有材料更少的电池 充电更快、寿命更长

科学家开发出需要稀有材料更少的电池 充电更快、寿命更长 研究人员通过开发快速充电功能和使用有机材料增强负极,减少了对稀有非欧洲材料的依赖,从而推动了纳离子电池技术的发展。此外,他们还改进了阴极,创造出一种高能量、快速充电、无钴的材料,这种材料在使用过程中会逐渐发生结构变化,因此寿命更长。资料来源:代尔夫特理工大学这些电极可由有机材料制成,这减少了对并非来自欧洲的稀有材料的依赖,优点在于阴极也得到了改进。代尔夫特的研究人员还改进了另一面,并发表了相关文章。这项研究最近发表在《自然-可持续性》杂志上。《用于钠离子电池的快充高压分层阴极》详细介绍了一种新型正极的开发情况,其设计原理源自他们于 2020 年发表在《科学》杂志上的论文。根据这些设计原则,我们设计了一种材料,它结合了两种可能的最佳结构:高能量密度与快速充电。此外,这种材料在充电和放电过程中会逐渐改变其结构,从而延长其使用寿命。此外,这种材料不含钴,而钴在锂离子阴极中仍然很常见。由于对这些电池材料的了解不断加深,第三个增长基金项目"可持续电池技术"的下一步工作已经准备就绪。在该项目中,除了锂离子电池研究外,还将在全国范围内开展纳离子电池研究。电池研究将进一步扩大,使这项技术能够应用于各国市场。参考文献:DOI: 10.1038/s41893-024-01266-1编译来源:ScitechDaily ... PC版: 手机版:

封面图片

新研发的可弯曲储能材料承受数千次弯曲也不会失去其能力

新研发的可弯曲储能材料承受数千次弯曲也不会失去其能力 热激活和等离子体的协同效应。资料来源:POSTECH介孔金属氧化物(MMO)的特点是具有 2 到 50 纳米(nm)大小的孔隙。介孔金属氧化物具有广泛的表面积,因此具有多种应用,如高性能能量存储和高效催化、半导体和传感器。然而,在可穿戴设备和柔性设备上集成 MMOs 仍然是一个巨大的挑战,因为塑料基底无法在合成 MMOs 的高温(350°C 或更高)条件下保持其完整性。同时诱导金属氧化物形成和模板去除。资料来源:POSTECH为解决这一问题,研究团队利用热和等离子体的协同效应,在温度更低(150 ~ 200oC)的柔性材料上合成了多种 MMOs,包括氧化钒(V2O5)、著名的高性能储能材料V6O13、TiO2、Nb2O5和WO3。高活性等离子体化学分子提供了足够的能量,可以用高温来补偿。制造出的装置可弯曲数千次而不会失去储能性能。主要研究人员 Jin Kon Kim 教授表达了自己的观点:"我们正处于可穿戴技术革命的边缘。我们的突破可能会使随身设备不仅更加灵活,而且更能适应我们的日常需求"。这项研究成果发表在《先进材料》上。编译自:ScitechDaily ... PC版: 手机版:

封面图片

新的充电算法可将锂离子电池的寿命延长一倍

新的充电算法可将锂离子电池的寿命延长一倍 柏林亥姆霍兹中心(HZB)和柏林洪堡大学的一个欧洲研究小组开发出一种替代充电方案,使锂离子电池的寿命比现在更长。研究结果表明,通过改变充电器向电解质材料输送电流的方式,电池在经过数百次放电-充电循环后仍能保持较高的能量容量。锂离子电池是一种结构紧凑、坚固耐用的能源容器,已成为人们的宠儿。电动汽车和电子设备都依赖于它们,但随着电解质穿过分隔阳极和阴极的薄膜,它们的容量会逐渐降低。目前最好的商业级锂离子电池使用的电极由一种名为 NMC532 的化合物和石墨制成,使用寿命长达 8 年。传统的充电方式是使用恒定电流(CC)的外部电能。研究分析了使用 CC 充电时电池样品的情况,发现阳极的固体电解质界面(SEI)"明显变厚"。此外,他们还在 NMC532 和石墨电极结构中发现了更多裂纹。较厚的 SEI 和电极上较多的裂缝意味着锂离子电池容量的显著损失。因此,研究人员开发了一种基于脉冲电流(PC)的充电协议。使用新的 PC 协议对电池充电后,研究小组发现 SEI 接口变薄了很多,电极材料发生的结构变化也更少。研究小组利用欧洲两个领先的粒子加速同步加速器设施"BESSY II"和"PETRA III"进行了脉冲电流充电实验。他们发现,PC 充电可促进石墨中锂离子的"均匀分布",从而减少石墨颗粒中的机械应力和裂纹。该方案还能抑制 NMC532 阴极的结构退化。研究表明,方波电流的高频脉冲效果最好。测试表明,PC 充电可使商用锂离子电池的使用寿命延长一倍,容量保持率达到 80%。这项研究的共同作者、柏林工业大学教授 Julia Kowal 博士说:"脉冲充电可以在电极材料和界面的稳定性方面带来许多优势,并大大延长电池的使用寿命。" ... PC版: 手机版:

封面图片

加州大学圣地亚哥分校研发可自愈阴极固态锂硫电池 倍增电动汽车续航

加州大学圣地亚哥分校研发可自愈阴极固态锂硫电池 倍增电动汽车续航 固态锂硫电池是一种可充电电池,由固体电解质、锂金属阳极和硫阴极组成。这种电池具有能量密度更高、成本更低的优点,有望成为目前锂离子电池的理想替代品。与传统锂离子电池相比,它们每公斤可储存两倍的能量,换句话说,它们可以在不增加电池组重量的情况下,将电动汽车的续航里程增加一倍。此外,由于使用了丰富且易于获取的材料,它们不仅经济上可行,而且更环保。然而,锂硫固态电池的开发历来受到硫阴极固有特性的困扰。硫不仅是一种不良的电子导体,而且硫阴极在充电和放电过程中还会发生明显的膨胀和收缩,导致结构损坏以及与固体电解质的接触减少。这些问题共同削弱了阴极传输电荷的能力,影响了固态电池的整体性能和使用寿命。为了克服这些挑战,加州大学圣地亚哥分校可持续电力和能源中心的研究人员领导的团队开发出了一种新型阴极材料:一种由硫和碘组成的晶体。通过在结晶硫结构中加入碘分子,研究人员将阴极材料的导电性能大幅提高了 11 个数量级,使其导电性能比单纯的硫晶体高出 1000 亿倍。阴极材料从棕色粉末熔化成深紫红色液体,从而愈合。图片来源:David Baillot/加州大学圣地亚哥分校雅各布斯工程学院这项研究的共同资深作者、加州大学圣地亚哥分校纳米工程教授兼可持续电力与能源中心主任刘平说:"我们对这种新材料的发现感到非常兴奋。硫的导电性能大幅提高令人惊喜,在科学上也非常有趣。"此外,这种新型晶体材料的熔点很低,只有 65 摄氏度(149 华氏度),比一杯热咖啡的温度还要低。这意味着在电池充电后,阴极可以很容易地重新熔化,以修复因循环而受损的界面。这是解决阴极和电解液之间的固-固界面在反复充电和放电过程中发生累积性损伤的一个重要特性。这项研究的共同第一作者、加州大学圣地亚哥分校雅各布斯工程学院纳米工程教授 Shyue Ping Ong 说:"这种硫-碘阴极提出了一个独特的概念,可以解决锂-S 电池商业化的一些主要障碍。碘恰到好处地破坏了将硫分子结合在一起的分子间键,从而将其熔点降低到了"金锁区"既高于室温,又足够低,阴极可以通过熔化定期重新修复。""我们的新型阴极材料的低熔点使得修复界面成为可能,这是这些电池长期以来一直寻求的解决方案,"该研究的共同第一作者周建斌说,他曾是刘的研究小组的纳米工程博士后研究员。"这种新材料是未来高能量密度固态电池的有利解决方案"。为了验证新型阴极材料的有效性,研究人员构建了一个试验电池,并对其进行反复充放电循环。电池在超过 400 次循环中保持稳定,同时保留了 87% 的容量。这项研究的合著者、本田美国研究所首席科学家克里斯托弗-布鲁克斯(Christopher Brooks)说:"这一发现有可能通过大幅延长电池的使用寿命,解决固态锂硫电池问世所面临的最大挑战之一。电池只需提高温度就能实现自我修复,这可以大大延长电池的总寿命周期,为固态电池在现实世界中的应用开辟了一条潜在的途径。"该团队正致力于通过改进电池工程设计和扩大电池规格,进一步推动固态锂硫电池技术的发展。"虽然要实现可行的固态电池还有很多工作要做,但我们的工作是重要的一步,"刘说。"我们在加州大学圣地亚哥分校的团队与我们在国家实验室、学术界和工业界的研究合作伙伴之间的合作使这项工作成为可能。"编译自/scitechdaily ... PC版: 手机版:

封面图片

麻省理工学院的新型无钴有机电池材料将为电动汽车带来革命性变革

麻省理工学院的新型无钴有机电池材料将为电动汽车带来革命性变革 在一项新的研究中,研究人员表明,这种材料的生产成本远远低于含钴电池,其导电率与钴电池相似。研究人员报告说,这种新型电池的储电量也与钴电池相当,而且充电速度也比钴电池快。麻省理工学院 W.M. Keck 能源学教授 Mircea Dincă 说:"我认为这种材料可以产生很大的影响,因为它的效果非常好。它与现有技术相比已经很有竞争力,而且它可以节省大量成本,并避免目前用于电池的金属开采所带来的痛苦和环境问题。"Dincă是这项研究的资深作者,研究报告最近发表在《ACS Central Science》杂志上。23 岁的陈天阳博士和麻省理工学院前博士后哈里什-班达(Harish Banda)是论文的主要作者。其他作者包括麻省理工学院博士后王建德、麻省理工学院研究生朱利叶斯-奥本海姆(Julius Oppenheim)和博洛尼亚大学研究员亚历山德罗-弗朗切斯基(Alessandro Franceschi)。大多数电动汽车都由锂离子电池驱动,这种电池的充电原理是锂离子从一个正电极(称为阴极)流向一个负电极(称为阳极)。在大多数锂离子电池中,阴极都含有钴,这是一种具有高稳定性和高能量密度的金属。然而,钴也有很大的缺点。钴是一种稀缺金属,其价格会大幅波动,而且世界上大部分钴矿床都位于政局不稳的国家。钴的开采会造成危险的工作环境,并产生有毒废物,污染矿区周围的土地、空气和水源。"钴电池可以储存大量的能量,在性能方面也具备人们所关心的所有特性,但它们存在供应不广的问题,而且成本会随着商品价格而大幅波动。"Dincă说:"随着消费市场中电气化汽车的比例越来越高,成本肯定会越来越高。"由于钴有这样那样的缺点,因此人们进行了大量研究,试图开发替代电池材料。其中一种材料是磷酸铁锂(LFP),一些汽车制造商已开始在电动汽车中使用这种材料。尽管锂-铁-磷酸酯电池仍有实际用途,但其能量密度只有钴和镍电池的一半左右。另一种有吸引力的选择是有机材料,但迄今为止,大多数此类材料在导电性、存储容量和使用寿命方面都无法与含钴电池相媲美。由于导电率低,这类材料通常需要与聚合物等粘合剂混合,以帮助它们维持导电网络。这些粘合剂至少占整个材料的 50%,会降低电池的存储容量。大约六年前,在兰博基尼的资助下,Dincă的实验室开始进行一个项目,开发一种可为电动汽车提供动力的有机电池。在研究部分有机、部分无机的多孔材料时,Dincă和他的学生意识到,他们制造的一种完全有机的材料似乎是一种强导体。这种材料由多层 TAQ(双四氨基苯醌)组成,TAQ 是一种有机小分子,含有三个融合的六角环。这些层可以向各个方向延伸,形成类似石墨的结构。分子中含有称为醌和胺的化学基团,前者是电子库,后者有助于材料形成牢固的氢键。这些氢键使材料高度稳定,同时也非常不溶解。这种不溶性非常重要,因为它可以防止材料像某些有机电池材料那样溶解到电池电解液中,从而延长其使用寿命。Dincă 说:"有机材料降解的主要方法之一是溶解到电池电解液中,并进入电池的另一端,从而形成短路。如果使材料完全不溶解,这个过程就不会发生,因此我们可以在最少降解的情况下进行 2000 多个充电循环。Dincă对这种材料的测试表明,其导电性和存储容量与传统的含钴电池相当。此外,与现有电池相比,使用 TAQ 阴极的电池充放电速度更快,可加快电动汽车的充电速度。为了稳定有机材料并提高其附着在铜或铝制成的电池集流器上的能力,研究人员添加了纤维素和橡胶等填充材料。这些填料占整个阴极复合材料的比例不到十分之一,因此不会显著降低电池的存储容量。这些填料还能在电池充电时防止锂离子流入阴极,从而延长电池阴极的使用寿命。制造这种阴极所需的主要材料是一种醌前体和一种胺前体,它们作为商品化学品已经在市场上大量供应和生产。研究人员估计,组装这些有机电池的材料成本大约是钴电池成本的三分之一到二分之一。兰博基尼已经获得了这项技术的专利许可。Dincă 的实验室计划继续开发替代电池材料,并正在探索用钠或镁替代锂的可能性,因为钠或镁比锂更便宜、更丰富。编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人