磁层中的爆炸事件:科学家调查地球磁尾的异常副风暴

磁层中的爆炸事件:科学家调查地球磁尾的异常副风暴 图中显示地球周围的磁场线在磁尾重新连接,这通常是副风暴的最初迹象之一。西南研究所内部资助的一个项目正在调查副风暴的性质,特别是2017年的一次事件,当时似乎发生了重连接,但没有引发副风暴。资料来源:美国国家航空航天局/戈达德太空飞行中心-概念图像实验室自2015年发射以来,MMS航天器一直在勘测磁层和周围等离子体之间的边界磁层顶,以寻找磁重联的迹象,当磁场线汇聚、断开并重新连接时,就会发生磁重联,爆炸性地将磁能转化为热能和动能。2017 年,MMS 在磁尾观测到了磁重连接的迹象,但没有观测到伴随重连接出现的副风暴的正常迹象,如强电流和磁场扰动。四个 MMS 航天器在地球磁场轨道上的示意图。资料来源:美国国家航空航天局SwRI 的博士后研究员 Andy Marshall 博士说:"我们想看看 MMS 观测到的局部物理学如何影响整个全球磁层。通过将这一事件与更典型的副风暴进行比较,我们正努力加深对副风暴成因以及副风暴与重联之间关系的理解"。"在这个为期一年的项目中,SwRI 将把 MMS 对影响局部磁场和粒子的再连接的现场测量结果与 NASA 戈达德空间飞行中心的社区协调建模中心利用密歇根大学的空间天气建模框架创建的全球磁层重建结果进行比较。马歇尔说:"副风暴的全球磁尾对流模式与非副风暴的磁尾再连接模式之间可能存在重大差异。我们还没有研究过全球范围内的磁场线运动,因此这次不寻常的副风暴可能是MMS偶然观测到的局部现象。如果不是这样,它可能会重塑我们对尾侧再连接与副风暴之间关系的理解。"MMS是美国宇航局太阳地球探测器计划的第四次飞行任务。戈达德太空飞行中心建造、集成和测试了四个 MMS 航天器,并负责整个飞行任务的管理和运行。MMS 仪器套件科学小组的首席研究员在圣安东尼奥的 SwRI 工作。科学运行规划和仪器指挥由位于博尔德的科罗拉多大学大气和空间物理实验室的 MMS 科学运行中心负责。编译来源:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

科学家在月球上发现异常岩石

科学家在月球上发现异常岩石 现在,由明斯特大学的奥塔维亚诺-吕施博士领导的一个国际研究小组首次在月球表面发现了一米大小的异常岩石,这些岩石被尘埃覆盖,可能表现出独特的性质比如磁性异常。科学家们最重要的发现是,月球上只有极少数巨石上有一层具有非常特殊反射特性的尘埃。例如,这些新发现的巨石上的灰尘反射阳光的方式与之前已知的岩石不同。这些新发现有助于科学家了解月壳的形成和变化过程。研究结果发表在《地球物理研究-行星》杂志上。月球磁异常和反射特性众所周知,月球表面有磁性异常现象,特别是在一个叫做莱纳伽马的区域附近。然而,人们从未研究过岩石是否具有磁性的问题。行星学研究所的奥塔维亚诺-吕施(Ottaviano Rüsch)在归类这一发现时说:"目前对月球磁性的了解非常有限,因此这些新岩石将揭示月球及其磁核的历史。""我们首次研究了尘埃与莱纳伽马地区岩石的相互作用,更准确地说,是这些岩石反射特性的变化。例如,我们可以推断出这些大岩石对阳光的反射程度和方向"。这些图像是由美国国家航空航天局(NASA)的绕月勘测轨道飞行器(Lunar Reconnaissance Orbiter)拍摄的。利用人工智能进行月球探测研究小组最初感兴趣的是裂开的岩石。他们首先利用人工智能在约一百万张图片中搜索破裂的岩石这些图片也是由月球勘测轨道器拍摄的。伯尔尼大学太空与宜居性中心的瓦伦丁-比克尔(Valentin Bickel)说:"现代数据处理方法让我们能够对全球环境有全新的认识同时,我们也不断通过这种方式发现未知物体,比如我们在这项新研究中调查的异常岩石。搜索算法确定了大约 13 万块有趣的岩石,其中一半由科学家进行了仔细研究。""我们仅在一张图片上就认出了一块有明显暗区的巨石。这块岩石与其他岩石截然不同,因为与其他岩石相比,它向太阳散射的光线较少。我们怀疑这是由于特殊的尘埃结构造成的,比如尘埃的密度和粒度,"Ottaviano Rüsch 解释说。"通常情况下,月球尘埃多孔,会将大量光线反射回照明方向。然而,当尘埃被压实时,整体亮度通常会增加。多特蒙德工业大学的马塞尔-赫斯(Marcel Hess)补充说:"观测到的被尘埃覆盖的岩石并非如此。这是一个引人入胜的发现然而,科学家们对这种尘埃及其与岩石的相互作用的了解仍处于早期阶段。在接下来的几周和几个月里,科学家们希望进一步研究导致尘埃与岩石相互作用以及形成特殊尘埃结构的过程。这些过程包括,例如,由于静电荷或太阳风与当地磁场的相互作用而导致尘埃上升。未来研究与月球探索除了其他许多国际无人太空任务外,美国国家航空航天局(NASA)还将在未来几年内向雷纳伽马地区派出一个自动漫游车,以寻找类似类型的带有特殊尘埃的巨石。即使这仍然是未来的梦想,但更好地了解尘埃的运动也有助于规划人类在月球上的定居点等。毕竟,我们从阿波罗宇航员的经验中知道,尘埃会带来许多问题,如污染居住地(如空间站)和技术设备。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

科学家发现光与磁之间的突破性联系

科学家发现光与磁之间的突破性联系 耶路撒冷希伯来大学应用物理和电气工程研究所自旋电子学实验室主任阿米尔-卡普亚教授宣布了光磁相互作用领域的一项关键性突破。该团队的这一意外发现揭示了光学激光束控制固体磁性状态的机制,有望在各行各业得到切实应用。卡普亚教授说:"这一突破标志着我们对光与磁性材料之间相互作用的理解发生了范式转变。它为光控高速存储技术,特别是磁阻随机存取存储器(MRAM)和创新光学传感器的开发铺平了道路。事实上,这一发现标志着我们对光磁动力学理解的重大飞跃。"利用光束进行磁记录(应用)。资料来源:Amir Capua与光辐射的快速行为相比,磁铁的反应速度较慢,因此通常较少受到关注。通过研究,研究小组得出了一个新的认识:快速振荡光波的磁性成分具有控制磁铁的能力,从而重新定义了物理原理关系。有趣的是,他们发现了一种描述相互作用强度的基本数学关系,它将光的磁场振幅、频率和磁性材料的能量吸收联系在一起。这一发现与量子技术领域密切相关,并结合了迄今为止几乎没有重叠的两个科学界的原理:"我们是利用量子计算和量子光学界公认的原理,但在自旋电子学和磁学界却不太适用的原理,才得出这一认识的,当磁性材料和辐射处于完全平衡状态时,二者之间的相互作用已被充分证实。然而,迄今为止,人们对辐射和磁性材料不平衡的情况只做了非常片面的描述。这种非平衡状态是量子光学和量子计算技术的核心。我们借用量子物理学的原理,对磁性材料中的这种非平衡状态进行了研究,从而获得了磁体甚至可以对光的短时间尺度做出反应的基本认识。此外,这种相互作用被证明是非常重要和有效的。我们的发现可以解释过去二三十年间报道的各种实验结果。"这一发现具有深远的意义,特别是在利用光和纳米磁体进行数据记录的领域。它预示着超高速、高能效光控 MRAM 的潜在实现,以及各行各业信息存储和处理领域的重大变革。此外,在发现这一发现的同时,研究小组还推出了一种能够检测光的磁性部分的专用传感器。与传统传感器不同的是,这种尖端设计提供了各种应用的多功能性和集成性,有可能彻底改变以各种方式利用光的传感器和电路设计。这项研究由自旋电子学实验室的博士候选人 Benjamin Assouline 负责,他在这一突破性发现中发挥了至关重要的作用。由于认识到这一突破的潜在影响,该团队已申请了多项相关专利。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

远古海洋和行星碰撞的遗迹 科学家揭开地球神秘"D"层的新面纱

远古海洋和行星碰撞的遗迹 科学家揭开地球神秘"D"层的新面纱 与完美的球体不同,D"层出人意料地错落有致。它的厚度因地而异,有些地区甚至完全没有"D"层就像大陆高出地球海洋一样。这些有趣的变化吸引了地球物理学家的注意,他们将 D"层描述为一个异质或非均匀区域。由胡青阳博士(高压科学与技术高等研究中心)和邓杰博士(普林斯顿大学)领导的一项新研究表明,"D"层可能起源于地球的早期。他们的理论基于"巨型撞击假说"(Giant Impact hypothesis),该假说认为一个火星大小的天体撞击了原地球,在撞击后形成了一个覆盖整个地球的岩浆海洋。他们认为,"D"层可能是这一巨大撞击留下的独特成分,可能蕴藏着地球形成的线索。邓杰博士强调,在这个全球岩浆海洋中存在大量的水。这些水的确切来源仍是一个争论不休的话题,人们提出了各种理论,包括通过星云气体和岩浆之间的反应形成,或由彗星直接输送。普遍的观点认为,水会随着岩浆的冷却而向岩浆海洋的底部集中。到最后阶段,最靠近地核的岩浆所含的水量可能与地球现今的海洋相当。海底岩浆海洋中的极端压力和温度条件创造了一种独特的化学环境,促进了水和矿物之间发生意想不到的反应。胡青阳博士解释说:"我们的研究表明,这种含水岩浆海洋有利于形成一种富铁相,即过氧化铁镁。这种过氧化物的化学式为(Fe, Mg)O2,与下地幔中的其他主要成分相比,它对铁的偏好更为强烈。根据我们的计算,这种过氧化物对铁的亲和力可能会导致在几公里到几十公里厚的地层中积累以铁为主的过氧化物。"地核-地幔边界异质结构的形成这种富铁过氧化物相的存在将改变 D"层的矿物组成,偏离我们目前的理解。根据新的模型,D"层的矿物将以一种新的组合为主:贫铁硅酸盐、富铁(铁、镁)过氧化物和贫铁(铁、镁)氧化物。这种以铁为主的过氧化物还具有低地震速度和高导电性,使其成为解释 D"层独特地球物理特征的潜在候选物质。这些特征包括超低速度区和高电导率层,两者都是 D"层众所周知的成分异质性的原因。研究结果表明,由岩浆海洋中的古水形成的富铁过氧化物在形成"D"层的异质结构方面发挥了至关重要的作用。这种过氧化物对铁的强烈亲和力在这些富铁斑块和周围地幔之间形成了鲜明的密度对比。从根本上说,它就像一个绝缘体,阻止它们混合,并有可能解释在下地幔底部观察到的长期异质性。这个模型与最近的数值建模结果非常吻合,表明最下层地幔的异质性可能是一个长期存在的特征。编译自/scitechdaily ... PC版: 手机版:

封面图片

比一千个太阳还亮 科学家揭示恒星超级耀斑异常行为背后的物理学原理

比一千个太阳还亮 科学家揭示恒星超级耀斑异常行为背后的物理学原理 太阳耀斑和超级耀斑的物理原理被认为是相同的:磁能的突然释放。超级耀斑恒星具有更强的磁场,因此耀斑也更亮,但有些恒星却表现出一种不寻常的行为最初亮度增强,持续时间很短,随后出现持续时间更长但强度较低的二次耀斑。夏威夷大学天文研究所博士后研究员杨凯和副教授孙旭东领导的研究小组建立了一个模型来解释这种现象,该模型发表在《天体物理学报》上。"通过将我们学到的有关太阳的知识应用到其他更冷的恒星上,我们能够确定驱动这些耀斑的物理原理,尽管我们永远无法直接看到它们,"杨说。"这些恒星的亮度随时间的变化实际上帮助我们'看到'了这些耀斑,它们实在是太小了,无法直接观测到。"人们认为这些耀斑中的可见光只来自恒星大气的下层。磁重联产生的能量粒子从高温、脆弱的日冕(恒星的外层)降下,加热这些层。最近的研究假设,超级耀斑恒星也能探测到来自日冕环的辐射被太阳磁场困住的热等离子体,但这些环的密度必须非常高。遗憾的是,天文学家没有办法对此进行测试,因为除了我们自己的太阳之外,没有办法在其他恒星上看到这些环。太阳动力学天文台拍摄的太阳日冕环图像,显示了"日冕雨"现象。图中还包括一张地球的图像,以提供日冕环的比例,日冕环比地球大 10 多倍。图片来源:美国宇航局太阳动力学天文台/科学可视化工作室/汤姆-布里奇曼其他天文学家利用开普勒望远镜和 TESS 望远镜的数据,发现恒星有一条奇特的光曲线类似于天体的"峰突",即亮度的跳跃。事实证明,这种光曲线与太阳现象相似,即在最初的爆发之后会出现第二个更渐进的峰值。这些光曲线让我们想起了我们在太阳上看到的一种现象,叫做太阳晚期耀斑。研究人员问道:"同样的过程能量化的大型恒星环能否在可见光下产生类似的晚期亮度增强?"为了解决这个问题,杨改编了经常用于模拟太阳耀斑环的流体模拟,并放大了环的长度和磁能。他发现,耀斑的巨大能量输入会将大量质量泵入环路,从而产生密集、明亮的可见光发射,这与预测的结果不谋而合。这些研究表明,只有当超高温气体在环的最高处冷却下来时,我们才能看到这种"撞击"闪光。在重力的作用下,这些发光物质会下落,形成我们所说的"日冕雨",这就是我们在太阳上经常看到的现象。这让研究小组确信,这个模型一定是真实的。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

科学家称,地球上爆发了一场非常强的磁暴,风暴可持续长达40小时

科学家称,地球上爆发了一场非常强的磁暴,风暴可持续长达40小时 此前媒体曾报道,预计今年最强磁暴将于 5 月 10 日出现。 “5月9日下午,太阳又发生了一次强烈的耀斑。他们报告说,它的分数再次是X2.2,也就是说,这是最高级别的耀斑 太阳天文学IKI和ISPZ实验室" 虽然不可能完全保护自己免受磁暴的侵害,但您可以将其负面影响降至最低。避免饮酒和吸烟。积极思考并避免有压力的情况。洗个对比淋浴,多到新鲜空气中散步,按时睡觉

封面图片

下个“地球”?科学家新发现一颗宜居行星

下个“地球”?科学家新发现一颗宜居行星 近日,多名天文学家组成的国际团队又发现了一颗非常接近于地球,可能适合人类居住的系外行星Wolf 1069 b。这颗系外行星围绕着恒星 Wolf 1069 运转,距离地球 31 光年。类地行星与宜居行星类地行星顾名思义就是类似地球的行星。这里的类似一般指结构组成与地球类似之处,即中心是一个以铁为主的金属核球,核球外包裹着以各种岩石物质组成的幔和外壳。目前我们太阳系中水星、金星、地球和火星都算是类地行星。对于太阳系内的类地行星,人类都发射过探测器进行详细的探测。通过这些探测器,人类可以了解类地行星的地形地貌,内部物质组成,磁场和气候环境等,探寻类地行星形成的历史和生命起源。而对于太阳系外类地行星的探索才刚刚拉开帷幕,人类已经陆续发现了一批太阳系外类地行星。不久的将来,这方面将会突飞猛进,发现的类地行星数目很快将成百上千乃至上万。还可以对其中的一些距离较近易观测的目标的大气性质做精确刻画,有望找到生命存在的特征信号。而对它们整体的统计和比较研究也将让我们对类地行星的形成有全新的认识。我们人类生活在地球,地球是我们目前唯一已知的适宜生命居住的星,因此发现类地行星可以说是寻找宜居行星的第一步。星球的宜居需要满足很多条件,存在液态水只是基本条件之一,还有一些条件,比如它一般是一个岩石类行星(就是之前说的类地行星),且要有一定厚度的大气保护它免受宇宙高能粒子和小行星的轰击,维持表面温度的稳定。又比如可能还需要一定的磁场保护其免受恒星风和宇宙射线的危害,还需要一个稳定的像太阳一样的宿主恒星,如果恒星有频繁、剧烈的爆发将会对行星的宜居性产生威胁。其实很难说一颗行星怎样就一定是宜居的,只能根据上面所说的基本条件选出一些可能是宜居行星的候选天体。因为就算满足了这些条件,行星也可能不宜居,因为或许还有我们不知道的条件,归根结底是我们对生命起源和演化的认识还不够彻底。聚焦 Wolf 1069 b我们是通过视向速度法发现 Wolf 1069 b 的,该方法的原理很简单。都说行星绕着太阳转,其实运动都是相对的,恒星相对行星其实也在绕转,而且二者周期是相同的。因此,监测恒星相对观测者视向速度的变化,就可以知道周围的行星。Wolf 1069 b 距离地球 31 光年的距离,在天文学尺度上,算是很近的了Wolf 1069 b 是目前第六近的处在宜居带内的类地行星,远的则有几千光年。这次寻找到的 Wolf 1069 b 的质量大概是 1-2 倍的地球质量,从一般的质量-半径关系来推测的话,很可能是一颗和地球差不多大小的岩石类行星。它满足了宜居行星的基本要求,一是从质量推测它是类地行星;二是它处在“宜居带”,离它的主星距离适中,表面温度允许液态水的存在。Wolf 1069 b 是一颗潮汐锁定的行星,类似月球也被潮汐锁定,所以自转和公转同步。月球因为被潮汐锁定,一直是固定的一面朝向我们。Wolf 1069 b 也是固定的一面朝向它的恒星,这一面永远是白天,另一面永远是黑夜。Wolf 1069 b 围绕的恒星是颗红矮星,红矮星的宜居带因为离恒星很近,容易潮汐锁定,所以可能只有在前面所说的介于白天和黑夜的过渡地带更适合居住。此外,红矮星一般比太阳的活动更加剧烈,所以需要寻找一些“反常”的比较“安静”的红矮星,它周围宜居带内的类地行星才更适合居住。生命迹象探索寻找人类“第二家园”可以初步判断 Wolf 1069 b 具有一些宜居星球需要满足的条件,但是还不能判断这颗行星上有无生命迹象。首先,太阳系外行星离我们很远,我们不能直接看到行星的表面来直接看到生命迹象,只能通过一些非常间接的手段推测,比如通过探测行星的大气成分(这一点已经比较难了,尤其是类地行星,它们的大气层太薄了,对观测仪器和技术要求很高)。即使我们能分析出行星大气的成分,那也还有一个更难的,就是什么是生命迹象的信号。我们可以基于地球生命的经验来推测,但也可能存在其他形式的生命,其生命迹象与我们已知的不同,因此有很多不确定因素的存在。未来预计还会继续监测看 Wolf 1069 b 所在系统是否还有其他行星的存在,以及获取这个行星更多的轨道参数信息,来揭示这颗行星可能的形成历史。Wolf 1069 b 的发现是对人类已知宜居行星候选体星库的一个很好的补充,标志着人类寻找宜居星道路上又前进了一步,算是一个激励吧。它的发现也启示我们搜寻宜居行星不要局限在像我们太阳这样的恒星周围,也可以在不同类型的恒星(比如 Wolf 1069 这样的红矮星)周围多尝试。 ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人