工程师们创造了一种由四脚爬行生物启发的机器人

工程师们创造了一种由四脚爬行生物启发的机器人 一种替代方法是使用所谓的微型棘爪。这些夹具包含一系列锋利的小钩子,可以钩住被攀爬表面的小角落和缝隙。当抓取器被抬起,进行下一步攀爬时,钩子就会从表面松开。有些微型棘爪是被动的,依靠机器人悬挂身体的重量来保持抓地力。这种类型在相对平坦的墙壁上可以正常工作,但在悬崖峭壁等较不规则的表面上就比较吃力,需要采取更多的攀爬策略。有源微棘抓取器通过安装电动致动器,将一圈钩子有目的地沉入表面,从而绕过了这一限制,保持了在任何方向上都能起作用的电动抓取。不过,这种装置往往比较笨重、耗能、机械结构复杂,而且攀爬速度相当慢。这就是四足机器人 LORIS 的用武之地。LORIS 是与美国国家航空航天局(NASA)合作开发的,旨在探索其他行星该装置以一种攀爬有袋类动物命名,同时也取自"不规则斜坡轻型观测机器人"的字样,由保罗-纳丹、斯宾塞-巴克斯、亚伦-M-约翰逊和卡内基梅隆大学机器人力学实验室的同事们共同创造。机器人四条腿的末端都有一个伸展的微型棘爪,棘爪上有两组棘刺,彼此成直角排列。抓手通过一个被动腕关节与腿相连。这基本上意味着,无论腿部在做什么,抓手都会随之摆动。罗丽丝的每根微型螺旋管都由一个封装在 3D 打印塑料体内的钩组成机器人利用板载深度感应摄像头和微处理器,有策略地推进双腿,当一条腿上的抓手抓住攀爬表面时,对侧腿上的抓手在身体的另一侧,在身体的另一端也会这样做。只要这两条对角相对的腿保持抓手向内的张力,抓手就会牢牢地固定在表面。与此同时,机器人的另外两条相对的腿就可以自由地向上迈出下一步。这是一种受昆虫启发的攀爬策略,被称为定向向内抓取(DIG)。据研究人员介绍,LORIS 结合了被动式微螺纹抓手的轻便、快速、节能和简易性,以及主动式抓手的稳固抓取和适应性。此外,该机器人还具有制造简单、成本低廉的特点。您可以在下面的视频中看到 LORIS 的工作情况。有关这项研究的论文最近在国际机器人与自动化大会上发表。 ... PC版: 手机版:

相关推荐

封面图片

科学家创造出世界上最小、最轻、最快的全功能微型水黾机器人

科学家创造出世界上最小、最轻、最快的全功能微型水黾机器人 华盛顿州立大学的研究人员开发出了体积最小、速度最快的微型机器人,有望改变从人工授粉到外科手术的各个领域。这些机器人利用形状记忆合金进行运动,比以前的型号明显更轻、更快,通过模仿自然界昆虫的行为,有望实现更高的自主性和效率。图片来源:西悉尼大学图片社速度和微型化方面的突破机械与材料工程学院的博士生、这项研究的第一作者康纳-特里格斯塔德(Conor Trygstad)说:"与这种规模的其他微型机器人相比,这是非常快的速度,尽管它仍然落后于它们的生物亲戚。一只蚂蚁通常重达五毫克,移动速度可达每秒近一米。"微型机器人的关键在于使机器人移动的微型致动器。特里格斯塔德利用一种新的制造技术,将致动器微型化到不足一毫克,这是目前已知最小的致动器。一个西悉尼大学创造的机器人被放在一个25美分硬币旁边,以显示其大小。资料来源:西悉尼大学领导该项目的西悉尼大学机械与材料工程学院工程学副教授 Néstor O. Pérez-Arancibia 说:"这些致动器是迄今为止为微型机器人开发的最小、最快的致动器。"先进的致动器技术致动器使用一种称为形状记忆合金的材料,这种材料在加热时能够改变形状。之所以称之为"形状记忆",是因为它能记住并恢复到原来的形状。与移动机器人的典型电机不同,这些合金没有任何活动部件或旋转组件。Trygstad 说:"它们的机械性能非常好,轻型致动器的开发开辟了微型机器人技术的新领域。"形状记忆合金一般不用于大规模机器人运动,因为它们的速度太慢。但在西悉尼大学的机器人中,执行器是由两根直径为 1/1000 英寸的微小形状记忆合金线制成的。只需少量电流,这些金属丝就能轻松加热和冷却,使机器人能够以每秒 40 次的速度扇动鳍或移动脚。在初步测试中,致动器还能举起超过自身重量 150 倍的物体。与其他用于使机器人移动的技术相比,SMA 技术也只需要极少量的电力或热量就能使机器人移动。未来方向与改进Trygstad 说:"SMA 系统对供电系统的要求要低得多。"他是一名狂热的钓鱼爱好者,长期以来一直在观察水黾,并希望进一步研究它们的动作。虽然西悉尼大学的水黾机器人是用扁平的拍打动作来移动自己,但自然界的昆虫会用腿做更有效率的划船动作,这也是真正的昆虫能移动得更快的原因之一。研究人员希望模仿另一种昆虫,开发出一种既能在水面上也能在水面下移动的水黾型机器人。他们还在努力利用微型电池或催化燃烧技术,使机器人完全自主,不受电源束缚。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

受野生燕麦启发的自播生物杂交"机器人种子"

受野生燕麦启发的自播生物杂交"机器人种子" 当能量突然释放时,种子尖尖的另一端就会被压入土壤中。然后,沿着果壳外侧的背向绒毛会帮助种子保持稳固。设计所依据的天然野生燕麦种子意大利技术研究所(IIT-Italian Institute of Technology)和德国弗莱堡大学(University of Freiburg)的研究人员试图将这种机制复制到一种可用于输送任何种类种子的装置中。这就是所谓的 HybriBot。机器人的核心是种子(和一些肥料),种子被封装在一个由面粉和水制成的模塑胶囊里。胶囊干燥后,它就会被乙基纤维素包裹,这是一种不溶于水的环保型生物聚合物,常用于将肥料控制释放到土壤中。HybriBot 没有使用人工合成的姊妹芒,而是使用从真正的野生燕麦种子中提取的真正芒。它还加入了真正的燕麦籽壳毛。整个机器人的重量为 60 毫克,大约是天然野生燕麦种子重量的三倍。左图为 HybriBot 的制造材料,包括 3D 打印的可重复使用的模具、面粉/水面团、野燕麦籽毛和野燕麦籽姊妹芒研究人员告诉我们,虽然生产过程听起来可能相当繁琐和耗时,但自动化机器人装配系统可以快速、低成本地生产出成千上万个装有种子的HybriBots。重要的是,所有材料都可以在环境中生物降解,而且对任何可能食用它们的动物都无毒。在目前进行的测试中,机器人已成功地将番茄、菊苣和柳叶菜等植物的种子送入盆栽土、粘土和沙子中。希望该技术得到进一步开发后,能应用于农业和林业领域。由印度理工学院的芭芭拉-马佐莱(Barbara Mazzolai)和伊莎贝拉-菲奥雷罗(Isabella Fiorello)领导的这项研究的论文最近发表在《先进材料》(Advanced Materials)杂志上。您可以在下面的视频中看到 HybriBots 的工作情况。 ... PC版: 手机版:

封面图片

机器人频道订阅人数抓取

机器人频道订阅人数抓取 机器人功能:订阅人数监听 机器人简介:一款可以自动监听频道订阅人数变化的TG机器人,可设定增加人数提醒,当人数增加到时会有提醒。 机器人ID:@SubscribersMonitorBot

封面图片

"昆虫大脑"启发的机器人能轻松绕过障碍物

"昆虫大脑"启发的机器人能轻松绕过障碍物 在机器人技术日益先进的时代,有一个团队却逆流而上,从一只小飞虫针尖大小的大脑中寻找灵感,制造出了一个只需花费极少精力和能量就能巧妙避开碰撞的机器人。科学家们认为,果蝇的大脑非常小,在飞行过程中可用的计算资源非常有限,这种生物模型可以用于机器人的"大脑",以实现高效、低能耗和避开障碍物的运动。格罗宁根大学的物理学家伊丽莎白-奇卡(Elisabetta Chicca)说:"就像在火车上一样。附近的树木似乎比远处的房屋移动得更快。昆虫利用这一信息来推断事物的距离。我们从中学到的是:如果你没有足够的资源,你可以用你的行为来简化问题。"在果蝇的大脑中,周围物体的运动是通过光学神经元 T4 和 T5 处理的。在比勒费尔德大学神经生物学家马丁-埃格尔哈夫(Martin Egelhaaf)的帮助下,研究小组通过算法在小型机器人"大脑"中模拟了这种神经活动,使其具备了处理方向信息的能力,从而有效地移动并避免与路径上的任何障碍物发生碰撞。"许多机器人技术并不关注效率,"奇卡说。"我们人类在成长过程中往往会学习新的任务,在机器人技术领域,这也反映在当前的机器学习趋势中。但昆虫一出生就能立即飞行。在它们的大脑中,高效的飞行方式是硬性规定的。"最终,这个小巧的机器人实现了一个主要目标转向检测到的移动最少的区域。格罗宁根大学的索尔本-肖佩(Thorben Schoepe)是硬件的设计者,他对轮式机器人进行了一系列测试,发现它能在物体之间找到中心点,还能灵巧地调整路径,引导自己绕过障碍物就像昆虫在飞行时一样。由研究员索尔本-肖佩(Thorben Schoepe)制造的机器人在导航测试中对准目标中心 Leoni von Ristok/格罗宁根大学奇卡说:"这个模型非常出色,一旦设置好它,它就能在各种环境下工作。这就是这项成果的魅力所在。"研究小组认为,这是第一项专注于避障的同类研究,它为机器人神经形态硬件的发展迈出了一大步。未来,这样的机器可用于在灾难现场等杂乱地形中导航,能量输出极低,还可根据用途配备不同类型的传感器,如探测无结构物体的雷达。奇卡说:"我们开发的机器人灵感来自昆虫。它具有在密集地形中行进、避免碰撞、穿越缝隙和选择安全通道的卓越能力。这些能力是通过一个神经形态网络引导机器人向表面运动较小的区域移动来实现的。我们的系统利用了有关昆虫视觉处理和避障的知识"。这项研究发表在《自然通讯》杂志上。 ... PC版: 手机版:

封面图片

藻类细胞被招募来充当治疗肠道疾病的机器人

藻类细胞被招募来充当治疗肠道疾病的机器人 每个微型机器人都由一个海藻细胞(绿色)和抗炎纳米粒子(红色)组成。首先,什么是炎症性肠病?实际上,它是两种消化道自身免疫性疾病的统称,即克罗恩病和溃疡性结肠炎。虽然这两种疾病的确切病因还不完全清楚,但人们认为它们是由于人体免疫系统对入侵的病毒或细菌做出了不当反应而引起的。这种有缺陷的反应会导致被称为巨噬细胞的免疫细胞产生过量的致炎蛋白质,这种蛋白质被称为促炎细胞因子这种情况发生在结肠(又称大肠)内。然后,这些细胞因子转而与巨噬细胞上的受体结合,引发它们产生更多的细胞因子。由此造成的恶性循环会使结肠无限期地发炎,导致腹泻、直肠出血、腹痛、疲劳和体重减轻等症状不断出现。海藻机器人旨在打破这种恶性循环。这些微型机器人由加州大学圣迭戈分校的科学家们创造,每个机器人都是一个活的绿藻细胞,表面覆盖着由生物可降解聚合物制成的纳米颗粒。每个纳米颗粒上又覆盖着巨噬细胞膜。该图说明了微型机器人是如何被运送到结肠的患者(会)先吞下一粒胶囊,里面装满了悬浮在载液中的微型机器人。由于其配方,胶囊的外壳在胃中保持完整,直到达到结肠的中性 pH 值才会溶解。一旦溶解,微型机器人就会释放出来。海藻细胞/机器人游过结肠,彻底分散到整个器官中。结肠中的细胞因子会与机器人上的纳米颗粒结合。这是因为细胞因子将这些颗粒误认为是巨噬细胞,因为它们包裹着巨噬细胞膜。不过,由于纳米粒子不是巨噬细胞,因此不会触发它们产生更多的细胞因子。因此,结肠中的细胞因子数量会逐渐被纳米颗粒"耗尽",从而减轻炎症,使受损组织得以愈合。在对患有肠易激综合症的小鼠进行测试时,发现微型机器人可以减少直肠出血、改善粪便稠度、扭转体重下降趋势并减轻结肠炎症。更重要的是,啮齿动物没有表现出任何副作用。目前正在计划对人类进行临床试验。与约瑟夫-王(Joseph Wang)教授共同领导这项研究的张良芳教授说:"这种方法的优点是不需要药物。我们只是利用天然细胞膜来吸收和中和促炎细胞因子"。Zhang 和 Wang 以前曾利用藻类细胞微型机器人治疗肺炎。有关他们目前研究的论文最近发表在《科学机器人学》杂志上。 ... PC版: 手机版:

封面图片

进化与工程:为什么机器人无法超越动物?

进化与工程:为什么机器人无法超越动物? 西蒙-弗雷泽大学生物医学生理学和运动学系教授马克斯-多纳兰博士说:"角马可以在崎岖的地形上迁徙数千公里,山羊可以攀爬到真正的悬崖峭壁,找到看起来根本不存在的支点,蟑螂失去一条腿也不会减速。我们还没有任何机器人能够具备这样的耐力、灵活性和坚固性"。为了了解机器人落后于动物的原因并对其进行量化,一个由顶尖研究型大学的科学家和工程师组成的跨学科团队完成了对运行机器人各方面的详细研究,并将其与动物的同类产品进行了比较,论文发表在《科学机器人学》(Science Robotics)上。论文发现,按照工程师们使用的衡量标准,生物部件的表现比人造部件差得令人吃惊。不过,动物的长处在于它们对这些部件的整合和控制。除多纳兰博士外,团队成员还包括华盛顿大学电子与计算机工程系副教授萨姆-伯登博士、SRI 国际公司高级研究工程师汤姆-利比、科罗拉多大学博尔德分校保罗-M-拉迪机械工程系助理教授考希克-贾亚拉姆和佐治亚理工学院邓恩家族物理与生物科学副教授西蒙-斯庞伯格。研究人员分别研究了五个不同"子系统"(动力、框架、驱动、传感和控制)中的一个,并将其与生物等同物进行了比较。在此之前,人们普遍认为,动物之所以比机器人表现出色,一定是由于生物组件的优越性。利比说:"事情的结果是,除少数例外,工程子系统的性能都优于生物等同系统,有时甚至完全优于它们。但同样非常非常明显的是,如果在整个系统层面上将动物与机器人进行比较,就运动而言,动物是惊人的。而机器人尚未赶上"。研究人员指出,如果把机器人技术发展所需的相对较短的时间与千百万年来无数代动物的进化过程相比,机器人技术的发展实际上是非常迅速的。伯登说:"进化的速度会更快,因为进化是不定向的。我们可以在很大程度上纠正我们设计机器人的方式,在一个机器人身上学到一些东西,然后把它下载到其他机器人身上,而生物学却没有这种选择。因此,在设计机器人时,我们有办法比通过进化来得更快,但进化有一个巨大的领先优势。"有效运行的机器人不仅仅是一项工程挑战,它还提供了无数潜在用途。在为人类设计的世界中,轮式机器人往往难以驾驭,无论是解决"最后一英里"的送货难题,还是在危险环境中进行搜索或处理危险材料,这项技术都有许多潜在的应用领域。研究人员希望,这项研究将有助于指导未来机器人技术的发展,重点不是制造更好的硬件,而是了解如何更好地集成和控制现有硬件。多纳兰总结说:"随着工程学从生物学中学习集成原理,运行中的机器人将变得与生物机器人一样高效、敏捷和强大。"编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人