科学家揭示火蚁用身躯搭建“蚁筏”背后的科学原理

科学家揭示火蚁用身躯搭建“蚁筏”背后的科学原理 宾汉姆顿大学(Binghamton University)的研究人员正在探索火蚁如何形成浮筏在洪水中生存,目的是将这些生物机制应用到材料科学中。研究小组对这些蚂蚁浮筏的适应性和机械特性进行了研究,发现它们表现出一种独特的"捕捉粘合"行为,能在压力下增强强度。这项研究可能会开发出能在机械应力作用下自我强化的创新材料,有望应用于生物医学植入物和软机器人等多个领域。资料来源:罗伯特-瓦格纳当洪水侵袭火蚁生活的地区时,火蚁的生存对策是把蚁群螯合在一起,形成一个有浮力的"筏子",漂浮在水面上,使蚁群团结在一起。把它想象成一种浓缩的、适应性强的材料,其中的构件单个的蚂蚁实际上是有生命的。宾汉姆顿大学助理教授罗布-瓦格纳(Rob Wagner)作为科罗拉多大学博尔德分校弗内里软物质力学实验室(Vernerey Soft Matter Mechanics Lab)的成员领导了这项研究,他们在研究中调查了这些活体筏的适应性反应。研究目标是了解它们如何自主变形和改变机械特性,然后将最简单、最有用的发现融入人造材料中。他说:"生命系统一直让我着迷,因为它们能实现我们目前的工程材料无法实现的东西甚至差得很远。我们制造大块聚合物系统、金属和陶瓷,但它们都是被动的。这些成分不能像每一个生命系统那样储存能量,然后将能量转化为机械功。"瓦格纳认为,这种能量的储存和转换对于模仿生命系统的智能和自适应行为至关重要。在最近发表在《美国国家科学院院刊》上的论文中,科罗拉多大学的瓦格纳和他的合著者研究了火蚁蚁排在拉伸时对机械负荷的反应,并将这些蚁排的反应与动态自愈聚合物进行了比较。瓦格纳说:"许多聚合物是通过动态键结合在一起的,这些键会断裂,但可以重组。如果拉得足够慢,这些键就有时间重组材料,这样它就不会断裂,而是像孩子们玩的粘液或软冰淇淋一样流动。如果拉得很快,它就会像粉笔一样断裂。由于筏子是由蚂蚁相互粘连在一起的,它们之间的粘结可以断裂,也可以重组。所以,我和我的同事认为它们也会做同样的事情。"但瓦格纳和他的合作者发现,无论他们以何种速度拉动蚂蚁排,它们的机械反应几乎都是一样的,而且它们从未流动过。瓦格纳推测,蚂蚁在感觉到力的时候会反射性地收紧并延长抓握的时间,因为它们想保持在一起。它们要么减弱,要么关闭动态行为。测试火蚁筏在拉伸时对机械负荷的反应的实验。资料来源:罗伯特-瓦格纳这种受力后粘结力增强的现象被称为"捕捉粘结行为",它很可能会增强蚁群的凝聚力,这对蚁群的生存是有意义的。"当你用一定的力量拉动典型的粘合剂时,它们会更快松开,寿命也会缩短你拉动粘合剂,就是在削弱它。这就是你在几乎所有被动系统中看到的情况,"瓦格纳说。"但在生命系统中,由于其复杂性,有时你会发现在一定范围的外力作用下,捕捉到的键能保持更长的时间。有些蛋白质会自动机械地做到这一点,但这并不是蛋白质在做决定。它们只是以这样一种方式排列,当施加外力时,就会显示出这些锁定或'捕捉'的结合位点。"瓦格纳认为,在工程系统中模仿这些捕捉键,可以制造出在机械应力较大的区域表现出自主、局部自强的人造材料。这可以延长生物医学植入物、粘合剂、纤维复合材料、软机器人组件和许多其他系统的寿命。像火蚁蚁排这样的昆虫集体聚集体已经在启发研究人员开发具有刺激响应机械特性和行为的材料。今年早些时候发表在《自然-材料》(Nature Materials )上的一篇论文由德克萨斯农工大学的瓦尔响应生物材料实验室(Ware Responsive Biomaterials Lab)领导,论文作者包括瓦格纳(Wagner)和他的前论文导师弗朗克-J.Vernerey 教授的贡献该论文展示了由被称为液晶弹性体的特殊凝胶或材料制成的带子如何在加热过程中盘旋,然后相互缠绕,形成类似固体的凝结结构,其灵感正是来自于这些蚂蚁。瓦格纳说:"这项工作的一个自然进展就是回答我们如何才能让这些带子或其他软构件之间的相互作用像火蚁和一些生物分子相互作用那样在负载下'接住'。"编译来源:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

科学家揭示1.35亿年前植物-蚂蚁伙伴关系的起源

科学家揭示1.35亿年前植物-蚂蚁伙伴关系的起源 一项新研究发现,大约在 1.35 亿年前,蕨类植物和开花植物同时进化出了蜜腺,这表明它们与蚂蚁之间的互惠关系也发生了平行进化,这对了解植物进化和物种间相互作用具有重要意义。资料来源:田纳西大学诺克斯维尔分校例如,有些植物设法招募蚂蚁保镖。它们在叶子上分泌含糖花蜜,吸引蚂蚁,然后这些领地意识很强、攻击性很强的蚂蚁雇佣兵就会在"它们的"植物上巡逻,蜇咬试图吃它的食草动物。这些关系在有花植物中都有详细记载,但在不开花的蕨类植物中也有发生。这对研究人员来说是个奇怪的消息,因为长期以来人们一直认为蕨类植物缺乏进行这种复杂的生物互动的蜜腺。UT生态学与进化生物学系助理教授雅各布-苏伊萨(Jacob Suissa)与康奈尔大学的同事,包括蕨类植物专家李菲伟(Fay-Wei Li)和蚂蚁专家科里-莫罗(Corrie Moreau)合作,研究这种现象是如何在数千年间发展起来的。他们最近在《自然通讯》(Nature Communications)上发表了关于这种物种间合作关系的进化时间表和潜在因素的研究成果。"这项工作的新内容有两个方面,"苏伊萨解释说。"首先,我们发现蜜腺产生含糖花蜜以吸引蚂蚁保镖的结构在蕨类植物和开花植物中的进化时间大致相同"。这发生在大约 1.35 亿年前,与白垩纪植物-动物联合体的兴起相吻合。苏伊萨说:"考虑到这是蕨类植物进化史上非常晚的时期,距它们的起源已经过去了近 2 亿年,这个时间点非常壮观。但它在开花植物进化史上却非常早,几乎是在白垩纪开花植物起源之初。"第二个新元素是这一切是如何发生的。蕨类植物最初是陆生植物,生长在森林地面上。大约在 6000 万年前的新生代,它们发生了重大转变,成为附生植物或树栖植物,也就是说,他们在成长过程中学会了一些新习惯。苏伊萨说:"我们发现,当蕨类植物离开森林地面,进入树冠,成为附生植物、攀援植物或树状蕨类植物时,它们利用了现有的蚂蚁与开花植物之间的相互作用,进化出了蜜腺。"这两种植物的生态和进化史呈现出一种奇特的动态。蕨类植物和开花植物是在 4 亿多年前从一个共同祖先分化而来的,但在蜜腺进化和蚂蚁-植物互利交换的同时,蕨类植物和开花植物也取得了长足进步。这表明,可能有一些'生命规则'支配着非花蜜腺和蚂蚁-植物互惠关系的进化。这项工作可以为生态、发育或基因组分析提供进化框架或背景,从而有助于未来的研究。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

科学家利用激光技术揭示了量子材料隐藏的特性

科学家利用激光技术揭示了量子材料隐藏的特性 加州大学圣迭戈分校的研究人员利用一种先进的光学技术进一步了解了一种名为Ta2NiSe5(TNS)的量子材料。他们的研究成果发表在《自然-材料》(Nature Materials)杂志上。材料可以通过不同的外部刺激受到扰动,通常是温度或压力的变化;然而,由于光是宇宙中速度最快的东西,材料对光刺激的反应非常快,从而揭示出原本隐藏的特性。通过改进技术,研究小组获得了更广泛的频率范围,从而揭示了 TNS 激子凝聚态的一些隐藏特性。资料来源:Sheikh Rubaiat Ul Haque / 斯坦福大学量子材料中的先进光学技术"从本质上讲,我们用激光照射一种材料,这就像定格摄影,我们可以逐步跟踪该材料的某种特性,"领导这项研究的物理学教授理查德-阿维特说,他也是论文的作者之一。"通过观察组成粒子如何在该系统中移动,我们可以找出这些以其他方式很难发现的特性。"该实验由第一作者谢赫-鲁巴亚特-乌尔-哈克(Sheikh Rubaiat Ul Haque)完成,他于2023年从加州大学圣地亚哥分校毕业,现在是斯坦福大学的一名博士后学者。他与阿弗里特实验室的另一名研究生张远一起改进了一种名为太赫兹时域光谱学的技术。这项技术允许科学家在一定频率范围内测量材料的特性,而哈克的改进使他们能够获得更广泛的频率范围。量子态和光放大这项工作基于论文的另一位作者、苏黎世联邦理工学院教授尤金-德姆勒(Eugene Demler)提出的理论。Demler 和他的研究生马里奥斯-迈克尔(Marios Michael)提出了这样一个观点:当某些量子材料被光激发时,它们可能会变成一种能放大太赫兹频率光的介质。这促使哈克及其同事仔细研究 TNS 的光学特性。当电子被光子激发到更高的层次时,会留下一个空穴。如果电子和空穴结合在一起,就会产生激子。激子还可能形成凝聚态当粒子聚集在一起并表现为单一实体时会出现的一种状态。在 Demler 理论的支持下,利用马克斯-普朗克物质结构与动力学研究所 Angel Rubio 小组的密度泛函计算,研究小组得以观测到反常的太赫兹光放大现象,从而揭示了 TNS 激子凝聚态的一些隐藏特性。凝缩物是一种定义明确的量子态,使用这种光谱技术可以将它们的某些量子特性印刻到光上。这可能会对利用量子材料的纠缠光源(多个光源具有相互关联的特性)这一新兴领域产生影响。哈克说:"我认为这是一个广阔的领域。Demler的理论可以应用于一系列具有非线性光学特性的其他材料。有了这项技术,我们就能发现以前从未探索过的新的光诱导现象。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

比一千个太阳还亮 科学家揭示恒星超级耀斑异常行为背后的物理学原理

比一千个太阳还亮 科学家揭示恒星超级耀斑异常行为背后的物理学原理 太阳耀斑和超级耀斑的物理原理被认为是相同的:磁能的突然释放。超级耀斑恒星具有更强的磁场,因此耀斑也更亮,但有些恒星却表现出一种不寻常的行为最初亮度增强,持续时间很短,随后出现持续时间更长但强度较低的二次耀斑。夏威夷大学天文研究所博士后研究员杨凯和副教授孙旭东领导的研究小组建立了一个模型来解释这种现象,该模型发表在《天体物理学报》上。"通过将我们学到的有关太阳的知识应用到其他更冷的恒星上,我们能够确定驱动这些耀斑的物理原理,尽管我们永远无法直接看到它们,"杨说。"这些恒星的亮度随时间的变化实际上帮助我们'看到'了这些耀斑,它们实在是太小了,无法直接观测到。"人们认为这些耀斑中的可见光只来自恒星大气的下层。磁重联产生的能量粒子从高温、脆弱的日冕(恒星的外层)降下,加热这些层。最近的研究假设,超级耀斑恒星也能探测到来自日冕环的辐射被太阳磁场困住的热等离子体,但这些环的密度必须非常高。遗憾的是,天文学家没有办法对此进行测试,因为除了我们自己的太阳之外,没有办法在其他恒星上看到这些环。太阳动力学天文台拍摄的太阳日冕环图像,显示了"日冕雨"现象。图中还包括一张地球的图像,以提供日冕环的比例,日冕环比地球大 10 多倍。图片来源:美国宇航局太阳动力学天文台/科学可视化工作室/汤姆-布里奇曼其他天文学家利用开普勒望远镜和 TESS 望远镜的数据,发现恒星有一条奇特的光曲线类似于天体的"峰突",即亮度的跳跃。事实证明,这种光曲线与太阳现象相似,即在最初的爆发之后会出现第二个更渐进的峰值。这些光曲线让我们想起了我们在太阳上看到的一种现象,叫做太阳晚期耀斑。研究人员问道:"同样的过程能量化的大型恒星环能否在可见光下产生类似的晚期亮度增强?"为了解决这个问题,杨改编了经常用于模拟太阳耀斑环的流体模拟,并放大了环的长度和磁能。他发现,耀斑的巨大能量输入会将大量质量泵入环路,从而产生密集、明亮的可见光发射,这与预测的结果不谋而合。这些研究表明,只有当超高温气体在环的最高处冷却下来时,我们才能看到这种"撞击"闪光。在重力的作用下,这些发光物质会下落,形成我们所说的"日冕雨",这就是我们在太阳上经常看到的现象。这让研究小组确信,这个模型一定是真实的。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

科学家揭示300年前消防车灭火方法背后的物理学原理

科学家揭示300年前消防车灭火方法背后的物理学原理 1725 年的纽沙姆(Newsham)消防车激发了作者研究温德凯瑟尔效应的灵感,并捕捉到了压力下稳定水流这一经久不衰的技术背后的物理学原理。图片来源:图片由威廉斯堡殖民地基金会提供消防创新一个里程碑式的进步是发明了"吸水蠕虫",即连接在手动水泵上的皮管。后来又出现了 Windkessel,它是木制马车底部的一个舱室,可以压缩空气,通过软管持续抽水,形成稳定的水流。受 1725 年一台消防车的启发,作者在 AIP 出版社出版的《美国物理学报》上发表文章,分析了压力室的 Windkessel 效应,以捕捉这项广泛应用、经久不衰的技术背后的物理学原理。作者特雷弗-利普斯科姆(Trevor Lipscombe)说:"在几个世纪前的书籍和论文中,隐藏着许多引人入胜的物理问题!最近,我们一直在研究如何将基本流体力学应用于生物系统,并在医学期刊上发现了一个常见的描述:心脏就像一个Windkessel,这就引出了一个问题:Windkessel 究竟是什么?顺藤摸瓜,我们找到了关于洛夫廷的'吸水蠕虫'装置的描述,并在纽沙姆的消防车中发现了一种救生应用。"物理学和消防设备为了确定哪些因素对温德凯瑟尔效应影响最大,作者比较了试验室的初始状态、水桶队的注水速度(容积流入量)、压力形成的时间长度以及对输出流量的影响。利普斯科姆说:"面对洛夫廷的设计或纽沙姆的消防车,物理学家想要理清其中涉及的基础科学仅仅因为它就在那里。这是物理学的乐趣所在。同时,这也是教学的一个方面。我们的文章建立了一个简单的模型,展示了纽沙姆消防车是如何工作的。我们在一定程度上回答了'我什么时候会用到这些东西'的问题"。接下来,作者计划研究心脏-主动脉系统中涉及的生理 Windkessel。"伯努利定律、理想气体定律和等温膨胀的知识是我们建立模型来探索这个装置如何工作的三个要素,"利普斯科姆说。"但是,如果我们能更好地理解这个系统,我们就可以研究那些重要的参数,看看改变这些参数会如何改进这个装置"。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

科学家确定可用于搭建月球和火星建筑的潜在溶剂

科学家确定可用于搭建月球和火星建筑的潜在溶剂 这项工作由华盛顿州立大学机械与材料工程学院副教授苏米克-班纳吉(Soumik Banerjee)领导,在《物理化学杂志B》(Journal of Physical Chemistry B)上进行了报道。被称为离子液体的强力溶剂是处于液态的盐。"机器学习工作把我们从 2 万英尺的高度降到了 1000 英尺的水平,"Banerjee 说。"我们能够非常快速地向下选择大量离子液体,然后我们还能科学地理解决定溶剂是否能够溶解材料的最重要因素。"美国国家航空航天局(NASA)资助了Banerjee的工作,作为其Artemis任务的一部分,NASA希望将人类送回月球,然后再送往火星等更深的太空。但是,要使这样的长期任务成为可能,宇航员就必须利用这些地外环境中的材料和资源,使用3D打印技术利用从月球或火星土壤中提取的基本元素制造结构、工具或零件。Banerjee说:"对美国国家航空航天局来说,原地资源利用是未来几十年的一件大事。否则,我们将需要从地球运载高得吓人的材料"。获取这些建筑材料必须以环保和节能的方式进行。开采元素的方法也不能使用水,因为月球上没有水。Banerjee 的研究小组十多年来一直在研究用于电池的离子液体,这可能就是答案。然而,在实验室测试每种候选离子液体既昂贵又耗时,因此研究人员利用机器学习和原子级别的建模技术,从数十万种候选离子液体中筛选出了几种。他们寻找那些可以消化月球和火星材料,提取铝、镁和铁等重要元素,可以自我再生,或许还能产生氧气或水作为副产品,帮助提供生命支持的离子液体。在确定溶剂所需的优良品质后,研究人员找到了大约六种非常理想的候选溶剂。成功的重要因素包括组成盐的分子离子的大小、表面电荷密度(即离子单位面积上的电荷)以及离子在液体中的流动性。在另一项研究中,研究人员与科罗拉多大学的研究人员合作,在实验室中测试了几种离子液体溶解化合物的能力。他们希望最终能建造一个实验室规模或中试规模的反应器,并用从月球获取到的材料测试候选溶剂。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

最独特的粮食储存方式之一:蜜罐蚁腹部肿胀 用身体储存蚁巢的食物

最独特的粮食储存方式之一:蜜罐蚁腹部肿胀 用身体储存蚁巢的食物 蜜罐蚁被安置在一个特定的房间内,什么也不用做,蚁群中的工蚁会喂养和照料这些蚂蚁,它们会特地去收集一些含糖液体和其他营养物质来喂蜜罐蚁,让蜜罐蚁生长。等蜜罐蚁长成,它们就一动不动待在那里,几乎不用浪费多少能量。然后,在食物短缺的时候,工蚁就会轻轻拍打蜜罐蚁的身体,接收信号的蜜罐蚁就会反刍储存的糖浆,之后工蚁食用这些糖浆并分发给其他蚁群成员。蜜罐蚁分布在北美和南美、澳大利亚和非洲的干旱地区,食物供应非常不稳定所以,这种奇怪的粮食储存方式,被认为就是应对不稳定环境的一种策略。在自然界估计只有像蚂蚁这样分工明确的生物才能完成这一点,甘愿完全牺牲自己。不过,这种生存策略也带来了一些麻烦,就是包括人类在内的许多其它动物都对蜜罐蚁虎视眈眈。其中最常见的就是其它蚂蚁,它们会入侵蜜罐蚁巢穴夺取那些储存能量的蜜罐蚁。 ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人