科学家发现超地球形成过程中的第一块基石:氧化镁

科学家发现超地球形成过程中的第一块基石:氧化镁 高能激光实验将这种矿物的微小晶体置于岩石行星地幔深处的那种热量和压力之下,表明这种化合物可能是形成"超级地球"系外行星的岩浆海洋中最早凝固出来的矿物。"氧化镁可能是控制年轻超级地球热力学的最重要固体,"领导这项研究的约翰-霍普金斯大学地球与行星科学助理教授琼-威克斯说。"如果它具有如此高的熔化温度,那么当一颗炙热的岩石行星开始冷却,其内部分离为地核和地幔时,它将是第一个结晶的固体。"这些研究结果最新发表在《科学进展》(Science Advances)上。他们认为,氧化镁从一种形态过渡到另一种形态的方式可能对控制年轻行星是雪球还是熔岩、是形成水海洋还是大气层、还是具有这些特征的混合体的因素有重要影响。威克斯说:"在陆地超级地球中,这种物质将是地幔的重要组成部分,它的转变将极大地促进内部热量的快速流动,这将控制内部和行星其他部分随着时间的推移如何形成和变形。我们可以把它看作是这些行星内部的替代物,因为它将是控制其变形的物质,而变形是岩石行星最重要的组成部分之一"。在激光能量实验室的试验室内进行的冲击压缩氧化镁(MgO)的激光驱动实验。高功率激光束被用来将氧化镁样品压缩到超过地球中心的压力。辅助 X 射线源用于探测氧化镁的晶体结构。更亮的区域是纳秒级的发光等离子体发射。资料来源:June Wicks/约翰-霍普金斯大学超级地球比地球大,但比海王星或天王星等巨行星小,是系外行星搜索的关键目标,因为它们在银河系的其他太阳系中很常见。威克斯说,虽然这些行星的成分可能从气体到冰或水不尽相同,但岩质超级地球预计会含有大量氧化镁,可以像在地球上一样影响行星的磁场、火山活动和其他关键地球物理。为了模拟这种矿物在行星形成过程中可能承受的极端条件,Wick 的团队利用罗切斯特大学激光能量实验室的 Omega-EP 激光设备对小样本进行了超高压处理。科学家们还发射了 X 射线,并记录了这些光线在晶体上的反弹情况,以追踪它们的原子是如何随着压力的增加而重新排列的,特别是注意到它们在什么时候从固态转变为液态。当受到极度挤压时,氧化镁等材料的原子会改变排列方式,以承受挤压压力。这就是为什么随着压力的增加,这种矿物会从类似于食盐的岩盐"相"转变为类似于另一种叫做氯化铯的盐的不同构型。威克斯说,这种转变会影响矿物的粘度,并随着年龄的增长对地球产生影响。研究小组的研究结果表明,氧化镁可以在 430 到 500 千兆帕的压力和大约 9700 开尔文的温度(几乎是太阳表面温度的两倍)下以两种相态存在。实验还表明,这种矿物在完全熔化之前所能承受的最高压力高达 600 千兆帕,大约是人们在海洋最深处的海沟中所能感受到的压力的 600 倍。"氧化镁的熔化温度比任何其他材料或矿物都要高得多。钻石可能是最坚硬的材料,但这是最后融化的材料,"威克斯说。"说到年轻行星中的极端物质,氧化镁很可能是固态的,而地幔中悬浮的其他一切物质都会变成液态。"这项研究展示了氧化镁在极端压力下的稳定性和简易性,有助于科学家们开发更精确的理论模型,以探究氧化镁和其他矿物在像地球这样的岩石世界中的行为的关键问题。编译来源:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

地球史的秘密守护者:锆石帮助科学家揭示亿万年地质之谜

地球史的秘密守护者:锆石帮助科学家揭示亿万年地质之谜 锆石是一种几乎与地球本身一样古老的矿物,它是时间的记录者,也是了解许多地质现象(如氧化状态)的化学窗口。通过确定形成这些碎屑锆石的岩浆的氧化水平,科学家们能够推断出地壳到地幔循环、风化和超大陆循环的开始时间。来源:中国科学出版社锆石是一种几乎与地球本身一样古老的矿物,在岩浆(熔岩)冷却时结晶,可在岩浆岩中发现微量锆石。岩浆的形成构成了地球上的山脉。通过与水和大气的相互作用,山脉分解成沉积物。锆石坚固又稳定,耐风化和侵蚀,很少会消失在历史中,因此沉积物中的这种矿物(所谓的"碎屑锆石")最能让人了解地球的过去。锆石富含铀(U-Pb 测定法),是时间的记录者,也是了解许多地质现象(如氧化态)的化学窗口。火成岩源锆石和沉积物源锆石的 ΔFMQ 移动平均值(未显示低于 10% 的比例)与超大陆汞齐化时间间隔。与沉积源相关的岩浆在大约600Ma的周期性中更为减少,并在26亿年时形成。来源:中国科学出版社研究小组采用了 Loucks 等人(2020 年)的一种新方法来确定花岗岩岩浆的氧化态,该方法利用锆石中 Ce、U 和 Ti 的比率来跟踪地壳岩浆在地球历史上的氧化态变化,该计算方法不需要知道离子电荷,也不需要确定结晶温度、压力或母体熔体成分。"以前的方法包括Ce/Ce*和Eu/Eu*氧压计,但每种方法都有与温度、压力、主岩化学成分变化或测量Ce/Ce*和Eu/Eu*异常所需的REE元素精度有关的局限性"。来自西澳大利亚的 Bob Loucks 说。这种改进的氧化仪能够更可靠地评估氧化状态的变化,现在可以从全球构造随时间变化的角度来解释氧化状态的变化。通过确定形成这些碎屑锆石的岩浆的氧化水平,科学家们能够推断出地壳到地幔循环、风化和超大陆循环的开始时间。关键的一点是,位于地球表面的岩石可以被带回到地幔深处(地表以下数百至数千公里处)。我们的数据表明,这种现象不仅发生在今天,而且可能已经持续了数十亿年。通过观察从地球早期、30 亿年前的锆石到今天形成的锆石,我们发现它们形成时的岩浆氧化还原状态。碎屑锆石的氧化态(以ΔFMQ表示)在大约35亿年前升高,随后在过去30亿年中平均ΔFMQ>0,这表明大洋岩石圈在最终形成的俯冲带中被回收回地幔。研究表明,氧化还原态的下限在 26 亿年前急剧下降,标志着界限分明的大陆的形成和大洋岩石被埋回地球深部地幔。此外,研究人员还发现了氧化还原模式的周期性:每隔 6 亿年左右,大陆就会聚集在一起形成超级大陆,如冈瓦纳大陆、罗迪尼亚大陆、努拉大陆和苏比利亚大陆。编译自:ScitechDaily ... PC版: 手机版:

封面图片

远古海洋和行星碰撞的遗迹 科学家揭开地球神秘"D"层的新面纱

远古海洋和行星碰撞的遗迹 科学家揭开地球神秘"D"层的新面纱 与完美的球体不同,D"层出人意料地错落有致。它的厚度因地而异,有些地区甚至完全没有"D"层就像大陆高出地球海洋一样。这些有趣的变化吸引了地球物理学家的注意,他们将 D"层描述为一个异质或非均匀区域。由胡青阳博士(高压科学与技术高等研究中心)和邓杰博士(普林斯顿大学)领导的一项新研究表明,"D"层可能起源于地球的早期。他们的理论基于"巨型撞击假说"(Giant Impact hypothesis),该假说认为一个火星大小的天体撞击了原地球,在撞击后形成了一个覆盖整个地球的岩浆海洋。他们认为,"D"层可能是这一巨大撞击留下的独特成分,可能蕴藏着地球形成的线索。邓杰博士强调,在这个全球岩浆海洋中存在大量的水。这些水的确切来源仍是一个争论不休的话题,人们提出了各种理论,包括通过星云气体和岩浆之间的反应形成,或由彗星直接输送。普遍的观点认为,水会随着岩浆的冷却而向岩浆海洋的底部集中。到最后阶段,最靠近地核的岩浆所含的水量可能与地球现今的海洋相当。海底岩浆海洋中的极端压力和温度条件创造了一种独特的化学环境,促进了水和矿物之间发生意想不到的反应。胡青阳博士解释说:"我们的研究表明,这种含水岩浆海洋有利于形成一种富铁相,即过氧化铁镁。这种过氧化物的化学式为(Fe, Mg)O2,与下地幔中的其他主要成分相比,它对铁的偏好更为强烈。根据我们的计算,这种过氧化物对铁的亲和力可能会导致在几公里到几十公里厚的地层中积累以铁为主的过氧化物。"地核-地幔边界异质结构的形成这种富铁过氧化物相的存在将改变 D"层的矿物组成,偏离我们目前的理解。根据新的模型,D"层的矿物将以一种新的组合为主:贫铁硅酸盐、富铁(铁、镁)过氧化物和贫铁(铁、镁)氧化物。这种以铁为主的过氧化物还具有低地震速度和高导电性,使其成为解释 D"层独特地球物理特征的潜在候选物质。这些特征包括超低速度区和高电导率层,两者都是 D"层众所周知的成分异质性的原因。研究结果表明,由岩浆海洋中的古水形成的富铁过氧化物在形成"D"层的异质结构方面发挥了至关重要的作用。这种过氧化物对铁的强烈亲和力在这些富铁斑块和周围地幔之间形成了鲜明的密度对比。从根本上说,它就像一个绝缘体,阻止它们混合,并有可能解释在下地幔底部观察到的长期异质性。这个模型与最近的数值建模结果非常吻合,表明最下层地幔的异质性可能是一个长期存在的特征。编译自/scitechdaily ... PC版: 手机版:

封面图片

MIT科学家正尝试利用二氧化碳足迹发现潜在外星生命

MIT科学家正尝试利用二氧化碳足迹发现潜在外星生命 研究人员提出,如果一颗陆地行星的大气中二氧化碳含量比同一星系中的其他行星少很多,这可能是该行星表面存在液态水也可能是生命的迹象。更重要的是,这一新特征就在美国宇航局詹姆斯-韦伯太空望远镜(JWST)的观测范围之内。虽然科学家们已经提出了其他宜居迹象,但这些特征即使不是无法测量,也很难用现有技术测量。研究小组表示,这种二氧化碳相对耗尽的新特征是目前唯一可以探测到的宜居性迹象。麻省理工学院行星科学助理教授朱利安-德-维特(Julien de Wit)说:"系外行星科学的圣杯是寻找宜居世界和生命的存在,但迄今为止人们谈论的所有特征都超出了最新天文台的能力范围。现在我们有办法找出另一颗行星上是否有液态水。这也是我们在未来几年内可以实现的目标"。在这幅插图中,美国宇航局詹姆斯-韦伯太空望远镜的多层遮阳板在天文台的蜂巢镜下伸展开来。韦伯望远镜是未来十年中最重要的天文台,为全世界成千上万的天文学家服务。它研究我们宇宙历史的每一个阶段。图片来源:NASA GSFC/CIL/Adriana Manrique Gutierrez研究小组的研究成果最近发表在《自然-天文学》上。de Wit 与英国伯明翰大学的 Amaury Triaud 共同领导了这项研究。他们在麻省理工学院的合著者包括本杰明-拉克姆、普拉杰瓦尔-尼劳拉、安娜-格利登-奥利弗-贾古茨、马特伊-佩奇、亚努什-佩特科夫斯基和萨拉-西格,以及伍兹霍尔海洋研究所(WHOI)的弗里德-克莱因、法国综合理工学院的马丁-图尔贝和波尔多天体物理实验室的弗兰克-塞尔西斯。迄今为止,天文学家已经探测到 5200 多个太阳系外的世界。利用目前的望远镜,天文学家可以直接测量行星到恒星的距离以及完成一个轨道所需的时间。这些测量结果可以帮助科学家推断行星是否在宜居带内。但是还没有办法直接确认一颗行星是否真的适合居住,也就是说它的表面是否存在液态水。在整个太阳系中,科学家可以通过观察"闪光" - 即从液体表面反射的闪光来探测液态海洋的存在。例如,在土星最大的卫星土卫六上就观测到了这些闪光或镜面反射,这有助于确认该卫星上有大型湖泊。然而,要在遥远的行星上探测到类似的微光,目前的技术还无法实现。不过,德威特和他的同事们意识到,还有一种近在咫尺的宜居特征可以在遥远的世界中探测到。特里奥德说:"通过观察我们自己系统中的陆地行星,我们萌生了一个想法。"金星、地球和火星都有相似之处,即都是岩石行星,居住在相对于太阳而言较为温和的区域。地球是三颗行星中目前唯一拥有液态水的行星。研究小组还注意到另一个明显的区别:地球大气中的二氧化碳含量要少得多。我们假设这些行星是以类似的方式诞生的,如果我们现在看到一颗行星的碳含量少了很多,那么它一定是去了某个地方。唯一能从大气中移除这么多碳的过程是涉及液态水海洋的强大水循环。事实上,地球的海洋在吸收二氧化碳方面发挥了重要而持久的作用。在数亿年的时间里,海洋吸收了大量的二氧化碳,几乎相当于今天金星大气中持续存在的二氧化碳量。这种行星级的效应使得地球大气中的二氧化碳含量大大低于其行星邻居。研究报告的合著者弗里德-克莱因(Frieder Klein)说:"在地球上,大气中的大部分二氧化碳在地质时间尺度上被封存在海水和固体岩石中,数十亿年来,这有助于调节气候和宜居性。"研究小组推断,如果在一颗遥远的行星上检测到类似的二氧化碳消耗,那么这将是其表面存在液态海洋和生命的可靠信号。在广泛查阅了生物学、化学、甚至气候变化背景下的碳封存等多个领域的文献后,研究人员认为,如果我们探测到碳耗竭,那么它就很有可能是液态水和/或生命的强烈信号。寻找生命的路线图在他们的研究中,研究小组提出了一种通过寻找贫化二氧化碳特征来探测宜居行星的策略。这种搜索对"豌豆荚"系统最有效,在这种系统中,多个大小差不多的陆地行星的轨道彼此相对靠近,类似于我们的太阳系。研究小组提出的第一步是确认这些行星是否有大气层,方法很简单,就是寻找是否存在二氧化碳,预计二氧化碳在大多数行星大气层中占主导地位。"二氧化碳是一种非常强的红外线吸收体,很容易在系外行星的大气层中被探测到,"de Wit 解释说。"二氧化碳的信号可以揭示系外行星大气层的存在"。一旦天文学家确定一个星系中有多颗行星拥有大气层,他们就可以继续测量它们的二氧化碳含量,观察是否有一颗行星的二氧化碳含量明显低于其他行星。如果是这样,那么这颗行星很可能适合居住,也就是说它的表面有大量的液态水。但宜居条件并不一定意味着行星上有人居住。为了确定是否真的存在生命,研究小组建议天文学家寻找行星大气层中的另一个特征:臭氧。研究人员注意到,在地球上,植物和一些微生物会汲取二氧化碳,但汲取的量远不及海洋。不过,作为这一过程的一部分,生命形式会释放出氧气,氧气与太阳的光子发生反应,转化成臭氧一种比氧气本身更容易检测的分子。研究人员说,如果一个星球的大气层同时显示出臭氧和二氧化碳枯竭的迹象,那么这个星球很可能是一个宜居的、有人居住的世界。特里奥德说:"如果我们看到臭氧,那么它很有可能与生命消耗二氧化碳有关。如果是生命,那就是灿烂的生命。它不仅仅是几个细菌。它将是一个星球规模的生物体,能够处理大量的碳,并与之相互作用。"据研究小组估计,美国宇航局的詹姆斯-韦伯太空望远镜将能够测量附近多行星系统中的二氧化碳,可能还包括臭氧,比如TRAPPIST-1一个围绕一颗明亮恒星运行的七大行星系统,距离地球仅40光年。"TRAPPIST-1 是我们可以利用 JWST 进行陆地大气研究的少数系统之一,"de Wit 说。"现在我们有了寻找宜居行星的路线图。如果我们齐心协力,就能在未来几年内完成颠覆性的发现。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

科学家发现地球生命的潜在星际起源

科学家发现地球生命的潜在星际起源 在地球上出现生命之前,基本的有机分子是由氮、硫、碳和磷等稀缺元素形成的。新的研究表明,富含这些元素的宇宙尘埃可能通过在地球上,特别是在冰原融洞中的高浓度积累,启动了前生物化学,从而有可能导致生命组成元素的形成。资料来源:NASA / JPL-Caltech事实上,生命的基本组成元素是如此稀少,以至于化学反应很快就会耗尽,如果它们真的能够进行的话。地球组成岩石的侵蚀和风化等地质过程也无法确保充足的供应,因为地壳中包含的这些元素实在太少了。尽管如此,在地球历史的前 5 亿年里,发生了一种前生物化学反应,产生了诸如RNA、DNA、脂肪酸和蛋白质等有机分子,所有生命都是在这些有机分子的基础上诞生的。所需数量的硫、磷、氮和碳从何而来?地质学家、诺米斯研究员克雷格-沃尔顿坚信,这些元素主要是以宇宙尘埃的形式来到地球的。这些尘埃是在太空中产生的,例如当小行星相互碰撞时。即使在今天,每年仍有约 3 万吨尘埃从太空落到地球上。然而,在地球诞生的早期,尘埃的数量要大得多,每年高达数百万吨。然而,最重要的是,尘埃粒子含有大量的氮、碳、硫和磷。因此,它们有可能引发化学级联反应。然而,灰尘的散布范围很广,在任何一个地方都只能发现极少量的灰尘,这一事实与上述说法相悖。沃尔顿说:"但如果把运输过程包括在内,情况就会不同。风、雨或河流在大范围内收集宇宙尘埃,并以浓缩的形式沉积在某些地方。"澄清问题的新模式为了弄清宇宙尘埃是否可能是启动前生物化学(反应)的源头,沃尔顿与剑桥大学的同事们一起建立了一个模型。研究人员利用该模型模拟了在地球历史的最初 5 亿年里,有多少宇宙尘埃落到了地球上,以及这些尘埃可能在地球表面的哪些地方积聚。他们的研究现已发表在科学杂志《自然-天文学》上。该模型是与剑桥大学的沉积专家和天体物理学家合作开发的。英国研究人员专门从事行星和小行星系统的模拟研究。模拟显示,早期地球上可能存在宇宙尘埃浓度极高的地方。而且,来自太空的补给源源不断。然而,地球形成后,尘埃雨迅速锐减:5 亿年后,尘埃流比零年小了一个数量级。研究人员将偶尔出现的上升高峰归因于小行星碎裂并向地球发送了尘埃尾流。冰原上的融化洞是尘埃陷阱大多数科学家和普通人都认为,地球被岩浆海洋覆盖了数百万年;这将在很长一段时间内阻止宇宙尘埃的迁移和沉积。沃尔顿说:"然而,最近的研究发现,有证据表明地球表面冷却和凝固的速度非常快,并形成了大面积的冰原。"根据模拟结果,这些冰原可能是宇宙尘埃积聚的最佳环境。冰川表面的融化孔即所谓的冷冻孔不仅会使沉积物积聚,也会使来自太空的尘粒积聚。随着时间的推移,尘埃粒子中释放出相应的元素。当它们在冰川水中的浓度达到临界值时,化学反应就会自动开始,从而形成有机分子,这就是生命的起源。即使在熔洞冰冷的温度下,化学过程也有可能开始进行。沃尔顿说:"低温并不会破坏有机化学,相反,低温下的反应比高温下的反应更有选择性和特异性。其他研究人员已经在实验室中证明,简单的环形核糖核酸(RNA)会在冰点附近的温度下自发地在这种融水汤中形成,然后进行自我复制。该论点的一个弱点可能是,在低温条件下,形成有机分子所需的元素只能非常缓慢地从尘埃粒子中溶解出来。"启动关于生命起源的辩论沃尔顿提出的理论在科学界并非没有争议。这项研究肯定会引发一场有争议的科学辩论,但它也会引发关于生命起源的新观点。早在 18 和 19 世纪,科学家们就确信陨石将沃尔顿所说的"生命元素"带到了地球。即使在当时,研究人员也在来自太空的岩石中发现了大量这些元素,但在地球的基岩中却没有发现。沃尔顿说:"然而,从那时起,几乎没有人考虑过前生物化学主要是由陨石引发的这一观点。"沃尔顿解释说:"陨石的想法听起来很有吸引力,但有一个问题。一块陨石只能在有限的环境中提供这些物质;陨石撞击地面的位置是随机的,而且无法保证进一步的供应。我认为,生命的起源不太可能依赖于几块广泛而随机散落的岩石。"另一方面,我认为富集的宇宙尘埃是一个可信的来源。"沃尔顿的下一步将是通过实验检验他的理论。在实验室中,他将使用大型反应容器来重现原始熔洞中可能存在的条件,然后将初始条件设定为 40 亿年前低温熔洞中可能存在的条件,最后再观察是否真的发生了产生生物相关分子的化学反应。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

科学家对海王星和天王星等冰行星上钻石雨的形成有了新的认识

科学家对海王星和天王星等冰行星上钻石雨的形成有了新的认识 在早先的 X 射线激光研究中,科学家们已经发现,由于大型气体行星内部普遍存在高压,钻石应该是由那里的碳化合物形成的。然后,这些碳化合物会进一步沉入行星内部,成为来自高层的宝石雨。图中显示的是行星内部的钻石雨,它由沉入周围冰层的钻石组成。在深入星球内部的过程中,压力和温度不断升高。即使在温度极高的区域,冰也会因为极高的压力而保留下来。资料来源:欧洲 XFEL / Tobias Wüstefeld欧洲 XFEL 的一项新实验现已表明,碳化合物形成钻石的起始压力和温度都比假设的要低。对于气态行星来说,这意味着钻石雨的形成深度比想象的要低,因此可能会对磁场的形成产生更大的影响。此外,在比海王星和天王星小的气态行星上也有可能形成钻石雨,它们被称为"小海王星"。太阳系中不存在这样的行星,但太阳系外确实存在这样的系外行星。钻石雨在从行星外层流向内层的过程中,会夹带气体和冰,造成导电冰流。导电流体的电流就像一种发电机,行星的磁场就是通过它形成的。弗罗斯特说:"钻石雨可能对天王星和海王星复杂磁场的形成有影响。"欧洲 XFEL 的 HED 实验站。图片来源:European XFEL / Jan Hosan 欧洲 XFEL / Jan Hosan研究小组使用碳氢化合物聚苯乙烯制成的塑料薄膜作为碳源。在极高的压力下,金刚石从薄膜中形成这一过程与行星内部的过程相同,欧洲 XFEL 可以模仿这一过程。研究人员借助金刚石挤压单元和激光,产生了冰气巨行星内部普遍存在的 2200多摄氏度的高压和高温。设施的功能就像一个小型钳子,样品被挤压在两块钻石之间。在欧洲 XFEL X 射线脉冲的帮助下,可以精确观测到挤压中钻石形成的时间、条件和顺序。国际研究团队还包括来自欧洲 XFEL、德国汉堡DESY研究中心和德累斯顿-罗森多夫亥姆霍兹中心的科学家,以及来自不同国家的其他研究机构和大学的科学家。欧洲 XFEL 用户联盟 HIBEF(包括 HZDR 和 DESY 研究中心)为这项工作做出了重大贡献。弗罗斯特说:"通过这项国际合作,我们在欧洲 XFEL 取得了巨大进步,并对冰行星有了新的深刻认识。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

科学家在月球上发现异常岩石

科学家在月球上发现异常岩石 现在,由明斯特大学的奥塔维亚诺-吕施博士领导的一个国际研究小组首次在月球表面发现了一米大小的异常岩石,这些岩石被尘埃覆盖,可能表现出独特的性质比如磁性异常。科学家们最重要的发现是,月球上只有极少数巨石上有一层具有非常特殊反射特性的尘埃。例如,这些新发现的巨石上的灰尘反射阳光的方式与之前已知的岩石不同。这些新发现有助于科学家了解月壳的形成和变化过程。研究结果发表在《地球物理研究-行星》杂志上。月球磁异常和反射特性众所周知,月球表面有磁性异常现象,特别是在一个叫做莱纳伽马的区域附近。然而,人们从未研究过岩石是否具有磁性的问题。行星学研究所的奥塔维亚诺-吕施(Ottaviano Rüsch)在归类这一发现时说:"目前对月球磁性的了解非常有限,因此这些新岩石将揭示月球及其磁核的历史。""我们首次研究了尘埃与莱纳伽马地区岩石的相互作用,更准确地说,是这些岩石反射特性的变化。例如,我们可以推断出这些大岩石对阳光的反射程度和方向"。这些图像是由美国国家航空航天局(NASA)的绕月勘测轨道飞行器(Lunar Reconnaissance Orbiter)拍摄的。利用人工智能进行月球探测研究小组最初感兴趣的是裂开的岩石。他们首先利用人工智能在约一百万张图片中搜索破裂的岩石这些图片也是由月球勘测轨道器拍摄的。伯尔尼大学太空与宜居性中心的瓦伦丁-比克尔(Valentin Bickel)说:"现代数据处理方法让我们能够对全球环境有全新的认识同时,我们也不断通过这种方式发现未知物体,比如我们在这项新研究中调查的异常岩石。搜索算法确定了大约 13 万块有趣的岩石,其中一半由科学家进行了仔细研究。""我们仅在一张图片上就认出了一块有明显暗区的巨石。这块岩石与其他岩石截然不同,因为与其他岩石相比,它向太阳散射的光线较少。我们怀疑这是由于特殊的尘埃结构造成的,比如尘埃的密度和粒度,"Ottaviano Rüsch 解释说。"通常情况下,月球尘埃多孔,会将大量光线反射回照明方向。然而,当尘埃被压实时,整体亮度通常会增加。多特蒙德工业大学的马塞尔-赫斯(Marcel Hess)补充说:"观测到的被尘埃覆盖的岩石并非如此。这是一个引人入胜的发现然而,科学家们对这种尘埃及其与岩石的相互作用的了解仍处于早期阶段。在接下来的几周和几个月里,科学家们希望进一步研究导致尘埃与岩石相互作用以及形成特殊尘埃结构的过程。这些过程包括,例如,由于静电荷或太阳风与当地磁场的相互作用而导致尘埃上升。未来研究与月球探索除了其他许多国际无人太空任务外,美国国家航空航天局(NASA)还将在未来几年内向雷纳伽马地区派出一个自动漫游车,以寻找类似类型的带有特殊尘埃的巨石。即使这仍然是未来的梦想,但更好地了解尘埃的运动也有助于规划人类在月球上的定居点等。毕竟,我们从阿波罗宇航员的经验中知道,尘埃会带来许多问题,如污染居住地(如空间站)和技术设备。编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人