《侏罗纪公园》剧情成真:麻省理工学院创造出用于储存 DNA 的合成琥珀

《侏罗纪公园》剧情成真:麻省理工学院创造出用于储存 DNA 的合成琥珀 DNA 保存技术的进步在电影《侏罗纪公园》中,科学家提取了在琥珀中保存了数百万年的 DNA,并用它创造了早已灭绝的恐龙种群。麻省理工学院的研究人员部分受这部电影的启发,开发出一种玻璃状、类似琥珀的聚合物,可用于长期存储 DNA,无论是整个人类基因组还是照片等数字文件。目前大多数储存 DNA 的方法都需要冷冻温度,因此需要消耗大量能源,在世界上许多地方都不可行。相比之下,新型琥珀状聚合物可以在室温下储存 DNA,同时保护分子不受热量或水的破坏。研究人员证明,他们可以用这种聚合物存储编码《侏罗纪公园》主题音乐的 DNA 序列以及整个人类基因组。他们还证明,DNA 可以很容易地从聚合物中取出,而不会对其造成损坏。简化 DNA 保存技术前麻省理工学院博士后詹姆斯-巴纳尔(James Banal)说:"冷冻 DNA 是保存 DNA 的首要方法,但这种方法非常昂贵,而且无法扩展。我认为,我们的新保存方法将成为一种可能推动未来在 DNA 上存储数字信息的技术"。巴纳尔和麻省理工学院A. Thomas Geurtin化学教授杰里迈亚-约翰逊(Jeremiah Johnson)是这项研究的资深作者,他们的研究成果于6月12日发表在《美国化学学会学报》(Journal of the American Chemical Society)上。麻省理工学院前博士后 Elizabeth Prince 和麻省理工学院博士后 Ho Fung Cheng 是论文的主要作者。麻省理工学院的研究人员设计出了一种将 DNA 封装到一种名为交联聚苯乙烯的热固性聚合物中的方法。DNA 被嵌入聚合物后,可以通过用半胱胺处理聚合物再次释放出来。图片来源:研究人员提供探索新的 DNA 编码方法DNA 是一种非常稳定的分子,非常适合存储海量信息,包括数字数据。数字存储系统将文本、照片和其他类型的信息编码为一系列 0 和 1。同样的信息可以通过构成遗传密码的四种核苷酸编码到 DNA 中:例如,G 和 C 可用来表示 0,而 A 和 T 则表示 1。DNA 提供了一种高密度存储数字信息的方法:从理论上讲,一个装满 DNA 的咖啡杯就可以储存全世界的数据。DNA 还非常稳定,合成和排序也相对容易。2021 年,巴纳尔和他的博士后导师、麻省理工学院生物工程教授马克-巴特(Mark Bathe)开发出一种将 DNA 储存在二氧化硅颗粒中的方法,这些颗粒可以贴上标签,显示颗粒中的内容。这项工作促成了名为"Cache DNA"的衍生公司的诞生。这种储存系统的一个缺点是,将 DNA 嵌入二氧化硅颗粒需要几天的时间。此外,从颗粒中移除 DNA 需要氢氟酸,而氢氟酸会对处理 DNA 的工人造成危害。用于 DNA 存储的创新聚合物设计为了找到替代存储材料,巴纳尔开始与约翰逊及其实验室成员合作。他们的想法是使用一种被称为可降解热固性的聚合物,这种聚合物在加热时会形成固体。这种材料还包括易于断裂的可裂解链节,使聚合物能够以可控的方式降解。约翰逊说:"有了这些可解构热固性塑料,根据我们在其中加入的可裂解键,我们可以选择如何降解它们。"在这个项目中,研究人员决定用苯乙烯和一种交联剂来制造热固性聚合物,它们共同形成了一种琥珀色的热固性聚合物交联聚苯乙烯。这种热固性聚合物还具有很强的疏水性,因此可以防止水分进入并破坏 DNA。为了使这种热固性物质可以降解,苯乙烯单体和交联剂与称为亚硫酰内酯的单体共聚。通过使用一种名为半胱胺的分子对其进行处理,可以切断这些连接。T-REX 方法:DNA 储存的新方法由于苯乙烯非常疏水,研究人员必须想出一种方法来诱导 DNA(一种亲水性、带负电荷的分子)进入苯乙烯。为此,他们找到了三种单体的组合,并将其转化为聚合物,通过帮助 DNA 与苯乙烯相互作用来溶解 DNA。每种单体都有不同的特性,它们通力合作,使 DNA 离开水进入苯乙烯。在那里,DNA 形成球形复合物,带电的 DNA 位于中心,疏水基团形成与苯乙烯相互作用的外层。加热后,这种溶液会变成玻璃状的固体块,其中嵌入 DNA 复合物。研究人员将他们的方法命名为 T-REX(热固性强化湿保存)。研究人员说,将DNA嵌入聚合物网络的过程需要几个小时,但随着进一步优化,这个时间可能会缩短。为了释放 DNA,研究人员首先加入半胱胺,半胱胺会裂解将聚苯乙烯热固性材料连接在一起的键,将其分解成小块。然后,再加入一种名为 SDS 的洗涤剂,这样就能在不损坏聚苯乙烯的情况下将 DNA 从聚苯乙烯中分离出来。DNA 存储技术的未来研究人员利用这些聚合物证明,他们可以封装不同长度的 DNA,从几十个核苷酸到整个人类基因组(超过 50000 个碱基对)。除了《侏罗纪公园》的主题音乐外,他们还能存储编码《解放奴隶宣言》和麻省理工学院徽标的 DNA。在对 DNA 进行存储和移除之后,研究人员对其进行了测序,发现没有引入任何错误,这是任何数字数据存储系统的关键特征。研究人员还发现,这种热固性聚合物可以在高达 75摄氏度(167华氏度)的温度下保护 DNA。目前,他们正在研究如何简化聚合物的制作过程,并将其制成胶囊,以便长期储存。对个性化医疗和未来研究的影响Cache DNA 是由 Banal 和 Bathe 创办的一家公司,Johnson 是该公司科学顾问委员会的成员。他们设想的最早应用是存储用于个性化医疗的基因组,他们还预计,随着未来更好技术的开发,这些存储的基因组可能会被进一步分析。"我们的想法是,为什么不永远保存生命的主记录呢?巴纳尔说。"10年或20年后,当科技的进步远远超出我们今天的想象时,我们可以了解到越来越多的东西。我们对基因组及其与疾病的关系的了解还处于起步阶段。"编译来源:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

麻省理工学院揭幕"质子之舞": 开拓能源新时代

麻省理工学院揭幕"质子之舞": 开拓能源新时代 麻省理工学院的化学家们首次详细描绘了这些质子耦合电子转移是如何在电极表面发生的。他们的研究成果可以帮助研究人员设计出更高效的燃料电池、电池或其他能源技术。麻省理工学院化学和化学工程教授、该研究的资深作者 Yogesh Surendranath 说:"我们在这篇论文中取得的进展是研究和理解了这些电子和质子如何在表面部位耦合的性质,这与催化反应有关,而催化反应在能量转换装置或催化反应中非常重要。"在他们的研究成果中,研究人员能够准确追踪电极周围电解质溶液 pH 值的变化如何影响电极内质子运动和电子流动的速度。麻省理工学院研究生诺亚-刘易斯(Noah Lewis)是这篇论文的第一作者,论文最近发表在《自然-化学》上。麻省理工学院前博士后 Ryan Bisbey、麻省理工学院研究生 Karl Westendorff 和耶鲁大学研究科学家 Alexander Soudackov 也是这篇论文的作者。质子传递质子耦合电子转移是指一种分子(通常是水或酸)将质子转移到另一种分子或电极表面,从而刺激质子接受者也接受一个电子。这种反应已被广泛应用于能源领域。"这些质子耦合电子转移反应无处不在。它们通常是催化机制中的关键步骤,对于制氢或燃料电池催化等能量转换过程尤为重要,"Surendranath 说。在制氢电解槽中,这种方法用于从水中去除质子,并在质子上添加电子以形成氢气。在燃料电池中,当质子和电子从氢气中移出并加入氧气形成水时,就会产生电能。施加电势会导致质子从氢离子(右图)转移到电极表面。利用具有分子定义质子结合位点的电极,麻省理工学院的研究人员为这些界面质子耦合电子转移反应建立了一个通用模型。图片来源:研究人员提供质子耦合电子转移在许多其他类型的化学反应中都很常见,例如二氧化碳还原(通过添加电子和质子将二氧化碳转化为化学燃料)。当质子接受体是分子时,科学家们可以精确控制每个分子的结构,并观察电子和质子如何在分子间传递,因此他们已经对这些反应的发生过程有了很多了解。然而,当质子耦合电子转移发生在电极表面时,这一过程就更难研究了,因为电极表面通常非常异质,质子有可能与许多不同的位点结合。为了克服这一障碍,麻省理工学院的研究小组开发出一种设计电极表面的方法,使他们能够更精确地控制电极表面的组成。他们的电极由石墨烯薄片组成,表面附着有机含环化合物。每个有机分子的末端都有一个带负电荷的氧离子,它可以接受周围溶液中的质子,从而使电子从电路流入石墨表面。Surendranath 说:"我们可以创造出一种电极,它不是由各种各样的位点组成,而是由单一类型的非常明确的位点组成的统一阵列,每个位点都能以相同的亲和力结合质子。由于我们拥有这些非常明确的位点,这让我们能够真正揭示这些过程的动力学"。利用这个系统,研究人员能够测量流向电极的电流,从而计算出平衡状态下质子向表面氧离子转移的速率质子向表面捐赠的速率和质子从表面转移回溶液的速率相等的状态。他们发现,周围溶液的 pH 值对这一速率有显著影响: 最高速率出现在 pH 值的两端酸性最强的 pH 值为 0,碱性最强的 pH 值为 14。为了解释这些结果,研究人员根据电极可能发生的两种反应建立了一个模型。在第一种反应中,强酸性溶液中高浓度的氢离子(H3O+)将质子传递给表面的氧离子,生成水。在第二种情况下,水将质子传递给表面氧离子,生成氢氧根离子(OH-),氢氧根离子在强碱性溶液中浓度较高。不过,pH 值为 0 时的速度比 pH 值为 14 时的速度快四倍,部分原因是氢离子释放质子的速度比水快。需要重新考虑的反应研究人员还惊奇地发现,这两个反应的速率并不是在中性 pH 值为 7(氢铵和氢氧根的浓度相等)时相等,而是在 pH 值为 10(氢氧根离子的浓度是氢铵的 100 万倍)时相等。该模型表明,这是因为涉及氢𬭩或水提供质子的前向反应比涉及水或氢氧化物去除质子的后向反应对总速率的贡献更大。研究人员说,关于这些反应如何在电极表面发生的现有模型假定,前向反应和后向反应对总速率的贡献相同,因此新发现表明,可能需要重新考虑这些模型。Surendranath说:"这是默认的假设,即正向和逆向反应对反应速率的贡献相同。我们的发现确实令人大开眼界,因为这意味着人们用来分析从燃料电池催化到氢进化等一切问题的假设可能是我们需要重新审视的。"研究人员目前正在利用他们的实验装置研究向电极周围的电解质溶液中添加不同类型的离子会如何加快或减慢质子耦合电子流的速度。刘易斯说:"通过我们的系统,我们知道我们的位点是恒定的,不会相互影响,因此我们可以读出溶液的变化对表面反应的影响。"编译自//scitechdaily ... PC版: 手机版:

封面图片

麻省理工学院的AI突破:对抗MRSA的新型抗生素先锋

麻省理工学院的AI突破:对抗MRSA的新型抗生素先锋 利用一种被称为深度学习的人工智能,麻省理工学院的研究人员发现了一类化合物,这种化合物可以杀死一种耐药细菌,这种细菌每年导致美国一万多人死亡。在最近发表于《自然》(Nature)的一项研究中,研究人员发现这些化合物可以杀死在实验室培养皿中生长的耐甲氧西林金黄色葡萄球菌(MRSA),以及在两种 MRSA 感染小鼠模型中生长的耐甲氧西林金黄色葡萄球菌。这些化合物对人体细胞的毒性也很低,因此特别适合作为候选药物。这项新研究的一个关键创新点是,研究人员还弄清了深度学习模型在预测抗生素效力时使用了哪些信息。这些知识可以帮助研究人员设计出更多的药物,它们可能比模型识别出的药物效果更好。"我们的洞察力在于,我们可以看到模型学习到了什么,从而预测出某些分子会成为很好的抗生素。"麻省理工学院医学工程与科学研究所(IMES)和生物工程系的特米尔医学工程与科学教授詹姆斯-柯林斯(James Collins)说:"我们的工作提供了一个框架,从化学结构的角度来看,它既省时、省资源,又具有机理上的洞察力。"这项研究是麻省理工学院"抗生素-人工智能项目"(Antibiotics-AI Project)的一部分,该项目由柯林斯领导。该项目是麻省理工学院抗生素-人工智能项目的一部分。该项目由柯林斯领导,其任务是在七年内发现针对七种致命细菌的新型抗生素。用人工智能应对 MRSA在美国,每年有超过 8 万人感染 MRSA,它通常会引起皮肤感染或肺炎。严重病例可导致败血症,这是一种可能致命的血液感染。在过去几年里,柯林斯和他在麻省理工学院阿卜杜勒-拉蒂夫-贾米尔健康机器学习诊所(Jameel Clinic)的同事们开始利用深度学习尝试寻找新的抗生素。他们的工作已经产生了针对鲍曼不动杆菌(一种常见于医院的细菌)和许多其他耐药细菌的潜在药物。这些化合物是利用深度学习模型确定的,该模型可以学习识别与抗菌活性相关的化学结构。然后,这些模型会筛选数百万种其他化合物,预测哪些化合物可能具有较强的抗菌活性。事实证明,这类搜索富有成效,但这种方法的一个局限是,模型是"黑盒子",也就是说,无法知道模型是根据什么特征进行预测的。如果科学家们知道模型是如何做出预测的,他们就能更容易地找出或设计出更多的抗生素。黄说:"我们在这项研究中要做的就是打开黑盒子。这些模型由大量模拟神经连接的计算组成,没有人真正知道这底下发生了什么"。提高人工智能的预测准确性首先,研究人员使用大幅扩展的数据集训练了一个深度学习模型。他们通过测试约 3.9 万种化合物对 MRSA 的抗生素活性生成了这些训练数据,然后将这些数据以及化合物的化学结构信息输入模型。Wong说:"基本上可以将任何分子表示为化学结构,还可以告诉模型该化学结构是否具有抗菌性。这个模型是在许多这样的例子中训练出来的。如果你给它任何新的分子、新的原子和化学键排列,它就能告诉你该化合物被预测为抗菌的概率。"为了弄清该模型是如何做出预测的,研究人员采用了一种被称为蒙特卡洛树搜索的算法,这种算法已被用来帮助使其他深度学习模型(如AlphaGo)更易于解释。这种搜索算法不仅能让模型对每种分子的抗菌活性做出估计,还能预测该分子的哪些亚结构可能会产生这种活性。人工智能驱动的药物发现过程为了进一步缩小候选药物的范围,研究人员又训练了三个深度学习模型,以预测化合物是否对三种不同类型的人体细胞有毒。通过将这些信息与抗菌活性预测相结合,研究人员发现了既能杀死微生物,又能对人体产生最小不良影响的化合物。利用这组模型,研究人员筛选了大约 1200 万种化合物,所有这些化合物都可以在市场上买到。根据分子中的化学子结构,模型从这些化合物中识别出了五种不同类别的化合物,这些化合物预计对 MRSA 具有活性。有希望的成果和未来方向研究人员购买了大约 280 种化合物,并对它们进行了针对在实验室培养皿中生长的 MRSA 的测试,从而确定了同一类中的两种似乎非常有希望成为候选抗生素的化合物。在两种小鼠模型(一种是 MRSA 皮肤感染模型,另一种是 MRSA 全身感染模型)的测试中,每种化合物都能将 MRSA 的数量减少 10 倍。实验发现,这些化合物似乎通过破坏细菌在细胞膜上维持电化学梯度的能力来杀死细菌。许多关键的细胞功能都需要这种梯度,包括产生 ATP(细胞用来储存能量的分子)的能力。柯林斯实验室在 2020 年发现的一种候选抗生素Halicin似乎也是通过类似的机制发挥作用的,但它对革兰氏阴性细菌(细胞壁较薄的细菌)具有特异性。MRSA 是一种革兰氏阳性细菌,细胞壁较厚。Wong说:"我们有相当有力的证据表明,这种新的结构类药物通过选择性地消散细菌中的质子动力,对革兰氏阳性病原体具有活性。这些分子选择性地攻击细菌细胞膜,而不会对人类细胞膜造成实质性损害。我们大幅增强的深度学习方法使我们能够预测这一类新结构的抗生素,并发现它对人类细胞没有毒性。"研究人员与Phare Bio 分享了他们的研究成果,Phare Bio 是柯林斯等人创办的非营利组织,也是抗生素人工智能项目的一部分。该非营利组织目前计划对这些化合物的化学特性和潜在临床用途进行更详细的分析。与此同时,柯林斯的实验室正在根据新研究的结果设计更多的候选药物,并利用这些模型寻找能杀死其他类型细菌的化合物。Wong说:"我们已经在利用基于化学子结构的类似方法来重新设计化合物,当然,我们也可以随时采用这种方法来发现针对不同病原体的新型抗生素。"编译自:ScitechDaily ... PC版: 手机版:

封面图片

麻省理工学院研究人员利用压电纤维开发出主动降噪织物

麻省理工学院研究人员利用压电纤维开发出主动降噪织物 这项发表在《先进材料》(Advanced Materials)杂志上的研究,是在早先研究的基础上,创造出一种可以充当麦克风并放大声音的丝绸织物。在研究过程中,研究小组意识到他们的材料还可以用来过滤声音。他们将后一个想法付诸实践。这种由压电纤维制成的特制织物几乎不比头发丝粗。当施加电压时,这种材料就会振动,如果调整得当,就能像降噪耳机一样抵消传入的声音。这种方法在狭小的空间内很有用,但在室内却不奏效。为了应对这一挑战,他们需要一种不同的方法。研究人员发现,通过使用电压使织物完全静止,可以使其变成一种声屏障,像镜子一样将声音反射回声源。在测试中,直接抑制模式(类似于降噪耳机)能够将音量降低 65 分贝。在"静止"模式下,声音传播降低了 75%。虽然前景广阔,但在考虑商业推广之前,仍有许多工作要做。该团队需要进行更多的测试,以了解纤维数量、缝合方向和电源电压等变量的变化对性能的影响。第一作者格蕾丝-杨(Grace Yang)说,这仅仅是个开始,要让这项技术真正有效,"我们还有很多旋钮可以转动"。他们还需要找出将其推向市场的最佳方法。这项研究的共同作者、麻省理工学院教授尤尔-芬克(Yoel Fink)告表示,这种材料现在还太新,他甚至不知道它的市场在哪里。 ... PC版: 手机版:

封面图片

麻省理工学院的超声波技术突破让非侵入性脑部治疗进入新时代

麻省理工学院的超声波技术突破让非侵入性脑部治疗进入新时代 ImPULS 设备包含封装在聚合物中的超声波传感器和电极(金)。图片来源:研究人员提供通过植入电极向大脑输送电脉冲的深部脑刺激疗法通常用于治疗帕金森病和其他神经系统疾病。然而,这种治疗方法所使用的电极最终会腐蚀并积累疤痕组织,需要将其移除。现在,麻省理工学院的研究人员开发出了一种替代方法,即使用超声波而不是电力来进行深部脑刺激,由一根头发丝粗细的纤维传递。在对小鼠的研究中,他们发现这种刺激可以触发神经元释放多巴胺,而多巴胺通常是帕金森病患者大脑中的一部分。"通过使用超声波技术,我们可以创造一种新的方式来刺激大脑深部的神经元发射,"麻省理工学院媒体实验室副教授、这项新研究的资深作者卡南-达格德维仁(Canan Dagdeviren)说。"这种装置比头发丝还要细,因此对组织的损伤可以忽略不计,而且我们很容易在大脑深部导航这种装置。"除了提供一种更安全的深部脑刺激方法外,这种方法还可能成为研究人员了解大脑工作原理的重要工具。麻省理工学院研究生杰森-侯(Jason Hou)和麻省理工学院博士后奥斯曼-高尼-纳耶姆(Md Osman Goni Nayeem)是这篇论文的主要作者,其他合作者来自麻省理工学院麦戈文脑研究所、波士顿大学和加州理工学院。该研究报告于6月4日发表在《自然通讯》(Nature Communications)杂志上。达格德维仁的实验室以前曾开发过可穿戴超声波设备,可用于通过皮肤给药或对各种器官进行诊断成像。然而,超声波无法通过附着在头部或头骨上的设备深入大脑。"如果我们想进入大脑深层,那么它就不能再仅仅是可穿戴或可附着的了。它必须是可植入的,"Dagdeviren 说。"我们精心定制设备,使其具有微创性,避开大脑深部的主要血管"。美国食品和药物管理局已批准使用电脉冲深部脑刺激治疗帕金森病症状。这种方法使用毫米厚的电极来激活大脑黑质区域中产生多巴胺的细胞。然而,一旦植入大脑,设备最终会开始腐蚀,植入物周围形成的疤痕组织会干扰电脉冲。新方法通过一根头发丝粗细的纤维传递超声波。图片来源:研究人员提供麻省理工学院的研究小组开始研究能否用超声波取代电刺激,从而克服其中的一些缺点。大多数神经元都有能对机械刺激(如声波的振动)做出反应的离子通道,因此超声波可用来激发这些细胞的活动。然而,现有的通过头骨向大脑输送超声波的技术无法高精度地深入大脑,因为头骨本身会干扰超声波,导致刺激偏离目标。Nayeem说:"要精确调节神经元,我们必须深入到更深的区域,这促使我们设计出一种新型超声植入物,它能产生局部超声场。为了安全地到达大脑深部区域,研究人员设计了一种由柔性聚合物制成的细如发丝的纤维。纤维的顶端包含一个鼓状超声换能器,换能器上有一层振动膜。这层薄膜包裹着一层薄薄的压电薄膜,当这层薄膜被微小的电压驱动时,就会产生超声波,附近的细胞就能检测到这些超声波。"Hou说:"它对组织安全,没有裸露的电极表面,而且功耗很低,这对转化为病人使用是个好兆头。"在对小鼠进行的试验中,研究人员发现,这种被称为ImPULS(可植入压电超声刺激器)的超声装置可以激发海马神经元的活动。然后,他们将这种纤维植入产生多巴胺的黑质,结果表明,这种纤维可以刺激背侧纹状体的神经元产生多巴胺。"刺激大脑一直是恢复大脑健康最有效但最不为人所知的方法之一。ImPULS让我们有能力以精确的时空分辨率刺激脑细胞,而且不会像其他方法那样产生损伤或炎症。"波士顿大学心理与脑科学助理教授、波士顿大学系统神经科学中心(Center for Systems Neuroscience)教员史蒂夫-拉米雷斯(Steve Ramirez)也是这项研究的作者之一。在新系统中,传感器(银色)由导线(金色)供电,导线可提供电刺激。图片来源:研究人员提供该装置的所有组件都具有生物兼容性,包括压电层,它是由一种名为铌酸钠钾(或 KNN)的新型陶瓷制成的。目前的植入物由外部电源供电,但研究人员设想未来的植入物可以由小型植入式电池和电子装置供电。研究人员开发了一种微加工工艺,使他们能够轻松改变纤维的长度和厚度,以及压电换能器产生的声波频率。这样就能为不同的大脑区域定制设备。Dagdeviren说:"我们不能说这种装置会对大脑的每个区域产生同样的效果,但我们可以非常自信地说,这种技术是可扩展的,而且不仅适用于小鼠。我们还可以把它做得更大,以便最终用于人类。"研究人员现在计划研究超声波刺激会如何影响大脑的不同区域,以及这种装置在植入一年后能否保持功能。他们还对加入微流体通道的可能性很感兴趣,这样就能让装置在传递超声波的同时传递药物。研究人员说,除了有望成为帕金森病或其他疾病的潜在治疗手段外,这种超声波设备还可以成为帮助研究人员进一步了解大脑的宝贵工具。"我们的目标是将其作为一种研究工具提供给神经科学界,因为我们认为我们没有足够的有效工具来了解大脑,"Dagdeviren 说。"作为设备工程师,我们正在努力提供新的工具,以便我们能够更多地了解大脑的不同区域。"编译自/scitechdaily ... PC版: 手机版:

封面图片

麻省理工学院的新型无钴有机电池材料将为电动汽车带来革命性变革

麻省理工学院的新型无钴有机电池材料将为电动汽车带来革命性变革 在一项新的研究中,研究人员表明,这种材料的生产成本远远低于含钴电池,其导电率与钴电池相似。研究人员报告说,这种新型电池的储电量也与钴电池相当,而且充电速度也比钴电池快。麻省理工学院 W.M. Keck 能源学教授 Mircea Dincă 说:"我认为这种材料可以产生很大的影响,因为它的效果非常好。它与现有技术相比已经很有竞争力,而且它可以节省大量成本,并避免目前用于电池的金属开采所带来的痛苦和环境问题。"Dincă是这项研究的资深作者,研究报告最近发表在《ACS Central Science》杂志上。23 岁的陈天阳博士和麻省理工学院前博士后哈里什-班达(Harish Banda)是论文的主要作者。其他作者包括麻省理工学院博士后王建德、麻省理工学院研究生朱利叶斯-奥本海姆(Julius Oppenheim)和博洛尼亚大学研究员亚历山德罗-弗朗切斯基(Alessandro Franceschi)。大多数电动汽车都由锂离子电池驱动,这种电池的充电原理是锂离子从一个正电极(称为阴极)流向一个负电极(称为阳极)。在大多数锂离子电池中,阴极都含有钴,这是一种具有高稳定性和高能量密度的金属。然而,钴也有很大的缺点。钴是一种稀缺金属,其价格会大幅波动,而且世界上大部分钴矿床都位于政局不稳的国家。钴的开采会造成危险的工作环境,并产生有毒废物,污染矿区周围的土地、空气和水源。"钴电池可以储存大量的能量,在性能方面也具备人们所关心的所有特性,但它们存在供应不广的问题,而且成本会随着商品价格而大幅波动。"Dincă说:"随着消费市场中电气化汽车的比例越来越高,成本肯定会越来越高。"由于钴有这样那样的缺点,因此人们进行了大量研究,试图开发替代电池材料。其中一种材料是磷酸铁锂(LFP),一些汽车制造商已开始在电动汽车中使用这种材料。尽管锂-铁-磷酸酯电池仍有实际用途,但其能量密度只有钴和镍电池的一半左右。另一种有吸引力的选择是有机材料,但迄今为止,大多数此类材料在导电性、存储容量和使用寿命方面都无法与含钴电池相媲美。由于导电率低,这类材料通常需要与聚合物等粘合剂混合,以帮助它们维持导电网络。这些粘合剂至少占整个材料的 50%,会降低电池的存储容量。大约六年前,在兰博基尼的资助下,Dincă的实验室开始进行一个项目,开发一种可为电动汽车提供动力的有机电池。在研究部分有机、部分无机的多孔材料时,Dincă和他的学生意识到,他们制造的一种完全有机的材料似乎是一种强导体。这种材料由多层 TAQ(双四氨基苯醌)组成,TAQ 是一种有机小分子,含有三个融合的六角环。这些层可以向各个方向延伸,形成类似石墨的结构。分子中含有称为醌和胺的化学基团,前者是电子库,后者有助于材料形成牢固的氢键。这些氢键使材料高度稳定,同时也非常不溶解。这种不溶性非常重要,因为它可以防止材料像某些有机电池材料那样溶解到电池电解液中,从而延长其使用寿命。Dincă 说:"有机材料降解的主要方法之一是溶解到电池电解液中,并进入电池的另一端,从而形成短路。如果使材料完全不溶解,这个过程就不会发生,因此我们可以在最少降解的情况下进行 2000 多个充电循环。Dincă对这种材料的测试表明,其导电性和存储容量与传统的含钴电池相当。此外,与现有电池相比,使用 TAQ 阴极的电池充放电速度更快,可加快电动汽车的充电速度。为了稳定有机材料并提高其附着在铜或铝制成的电池集流器上的能力,研究人员添加了纤维素和橡胶等填充材料。这些填料占整个阴极复合材料的比例不到十分之一,因此不会显著降低电池的存储容量。这些填料还能在电池充电时防止锂离子流入阴极,从而延长电池阴极的使用寿命。制造这种阴极所需的主要材料是一种醌前体和一种胺前体,它们作为商品化学品已经在市场上大量供应和生产。研究人员估计,组装这些有机电池的材料成本大约是钴电池成本的三分之一到二分之一。兰博基尼已经获得了这项技术的专利许可。Dincă 的实验室计划继续开发替代电池材料,并正在探索用钠或镁替代锂的可能性,因为钠或镁比锂更便宜、更丰富。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

俄罗斯方块启发麻省理工学院在核安全技术方面取得突破

俄罗斯方块启发麻省理工学院在核安全技术方面取得突破 基于"俄罗斯方块"游戏的新型探测器系统可以为监测核基地提供廉价、精确的辐射探测器。图片来源:Ella Maru Studio受"俄罗斯方块"启发的创新传感器设计现在,麻省理工学院和劳伦斯伯克利国家实验室(LBNL)的研究人员已经找到了一种计算方法,可以设计出非常简单、精简的传感器装置,从而精确定位分布式辐射源的方向。该装置以简单的四面体为基础,可以确定辐射源的方向和距离,但探测器像素较少。他们还证明,通过移动传感器获得多个读数,就能精确定位辐射源的物理位置。他们巧妙创新的灵感来自一个令人惊讶的来源:流行的电脑游戏"俄罗斯方块"。麻省理工学院教授李明达、Benoit Forget、高级研究科学家胡令文、首席研究科学家 Gordon Kohse、研究生 Ryotaro Okabe 和 Shangjie Xue、LBNL 的研究科学家 Jayson Vavrek SM '16、PhD '19,以及麻省理工学院和劳伦斯伯克利大学的其他一些人在《自然-通讯》上发表的一篇论文中描述了该团队的研究成果,这些研究成果很可能被推广到其他类型辐射的探测器中。辐射传感的技术进步检测辐射通常使用半导体材料,如碲化镉锌,这种材料在受到伽马射线等高能辐射照射时会产生电反应。但由于辐射很容易穿透物质,因此很难通过简单的计数来确定信号的来源。例如,盖革计数器在接收到辐射时只会发出"咔嗒"声,而无法确定辐射的能量或类型,因此要找到辐射源就需要四处走动,试图找到最大的声音,这与手持式金属探测器的工作原理类似。这个过程需要用户靠近辐射源,这可能会增加风险。为了在不太靠近的情况下提供来自静止设备的方向信息,研究人员使用了一个探测器网格阵列和另一个称为掩膜的网格,掩膜会在阵列上印上根据信号源方向不同而不同的图案。每一个单独的探测器或像素接收到的信号的时间和强度不同,需要通过算法来解释。这通常会导致探测器的复杂设计。用"俄罗斯方块"形状简化检测程序用于感应辐射源方向的典型探测器阵列既庞大又昂贵,在一个 10×10 的阵列中至少包括 100 个像素。然而,该研究小组发现,只要使用四个像素,按照"俄罗斯方块"游戏中的四叶草形状排列,就能接近大型昂贵系统的精确度。关键在于根据每个传感器检测到信号的时间以及每个传感器检测到信号的相对强度,对射线的到达角度进行适当的计算机重建。研究人员尝试了四种不同的像素配置(正方形、S 形、J 形或 T 形),通过反复实验,他们发现 S 形阵列的结果最为精确。这种阵列提供的方向读数精确度在 1 度以内,但所有三种不规则形状的阵列都比正方形阵列表现更好。李说,"这种方法的灵感来自于'俄罗斯方块'"。使系统正常工作的关键是在像素之间放置一种绝缘材料,如铅板,以增加从不同方向进入探测器的辐射读数之间的对比度。这些简化阵列中像素之间的铅片与大型阵列系统中使用的更复杂的阴影遮罩具有相同的功能。研究小组发现,不那么对称的排列能从小型阵列中提供更有用的信息,该研究的主要作者 Okabe 解释说。简化辐射探测器的优势"使用小型探测器的优点在于工程成本方面。不仅单个检测器元件(通常由碲锌镉或 CZT 制成)价格昂贵,而且从这些像素获取信息的所有互连也变得复杂得多。"李补充说:"就应用而言,探测器越小越简单越好。"虽然也有其他版本的简化阵列用于辐射探测,但许多阵列只有在辐射来自单一局部来源时才有效。这项工作的共同第一作者Xue补充说,它们可能会被多个辐射源或分散在空间的辐射源所混淆,而基于"俄罗斯方块"的版本则能很好地处理这些情况。实地测试和实际意义麻省理工学院的研究人员在不知道地面真实辐射源位置的情况下,在伯克利实验室用一个真实的铯辐射源进行了单盲现场测试,测试装置在找到辐射源的方向和距离方面具有很高的准确性。合著者、麻省理工学院核工程教授兼核科学与工程系主任 Forget 说:"辐射绘图对核工业至关重要,因为它有助于快速定位辐射源,保证每个人的安全。"另一位共同第一作者瓦夫雷克说,虽然他们的研究重点是伽马射线源,但他认为他们开发的从有限像素中提取方向信息的计算工具"要通用得多"。它并不局限于某些波长,还可以用于中子,甚至其他形式的光,如紫外线。麻省理工学院核反应堆实验室的资深科学家胡补充说,使用这种基于机器学习的算法和空中辐射探测,"可以对辐射事故进行实时监测和综合应急规划"。爱达荷国家实验室防御系统分部的科学家尼克-曼恩说:"这项工作对美国应对界和日益严重的放射性事件或事故威胁至关重要。"编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人