#视频 “恶心”是构成人体行为免疫系统的安全策略之一,这种心理防御机制会判断食物和环境中是否有病原体等潜在危险并避免与之接触。分

#视频 “恶心”是构成人体行为免疫系统的安全策略之一,这种心理防御机制会判断食物和环境中是否有病原体等潜在危险并避免与之接触。视频分析了恶心背后的心理和进化原因等。在新冠疫情时期,恶心激发机制甚至变得更加敏感,从而可以更好地预防一般性疾病与新冠病毒。

相关推荐

封面图片

【豆瓣9.0医学】《战斗细胞:人体免疫系统奇妙之旅》在日常生活中讲解免疫系统的抗病原理,既直观轻松,又精准实用,还不乏时尚极客的

【豆瓣9.0医学】《战斗细胞:人体免疫系统奇妙之旅》在日常生活中讲解免疫系统的抗病原理,既直观轻松,又精准实用,还不乏时尚极客的气息,这就是本书呈现给你身体免疫知识的方式。它以故事性的讲解和风格鲜明的插图,描述人体的免疫机制、免疫系统的各组成部分、各类细胞及重要蛋白(抗体、MHC、细胞因子等),与人有关的各种微生物(包括益生菌和各种病原体),以及多方的相互作用。介绍自愈、发炎、流行病、抗菌、抗病毒、寄生虫、过敏、疫苗、癌症、自身免疫性疾病等种种健康议题,帮你过上更为轻松安泰、胸有成竹的现代人生。

封面图片

世卫组织总干事谭德塞:未来尚不为人所致的病原体可能比新冠致命20倍

世卫组织总干事谭德塞:未来尚不为人所致的病原体可能比新冠致命20倍 而据西班牙媒体报道,近年来,世界卫生组织一直在研究一种未知疾病引发严重大流行的可能性,目的是为任何疾病暴发做好医疗卫生应急系统的准备。所谓“X疾病,是世卫组织在2018年采用的一个术语,指的是一种假设性、尚不为人所致的病原体,但这种病原体可能导致严重的国际大流行,因此它并不是一种具体的疾病,而是一种可能性。这并非危言耸听,早在2018年,比尔盖茨就曾发出警告称,一种致命的疾病即将来临,在传播的过程中可能会导致3000万人死亡。其表示,“有一个领域,全世界都没有取得多大进展,那就是防范全球性疫情。一些人或团体能够制造出像野火一样全球蔓延的武器化疾病,甚至能在实验室里制造出更致命的天花。”而在新冠大流行的2022年,比尔盖茨再次发声:下次大流行可能是自然暴发,也可能由生物危险分子人为蓄意传播。他认为随着人口快速增长,人类正在入侵越来越多的生态系统,未来20年内自然暴发大流行的可能性高达50%,至于病毒类型,不排除会是某种已知的,比如流感或者其它冠状病毒。 ... PC版: 手机版:

封面图片

看不见的劫持者:呼吸道细菌如何破坏我们的免疫系统

看不见的劫持者:呼吸道细菌如何破坏我们的免疫系统 昆士兰大学(The University of Queensland)的科学家们发现了一种常见细菌如何在呼吸道感染期间操纵人体免疫系统并引发顽疾。研究人员由昆士兰大学化学与分子生物科学学院的 Ulrike Kappler (乌尔丽克-卡普勒)教授领导。该研究调查了流感嗜血杆菌的毒力机制,这种细菌在呼吸道感染恶化中发挥着重要作用。流感嗜血杆菌的显微镜视图。资料来源:昆士兰大学卡普勒教授说:"这些细菌对弱势群体,如囊性纤维化患者、哮喘患者、老年人和土著社区的危害尤为严重。在某些情况下,如哮喘和慢性阻塞性肺病,它们会使症状急剧恶化。我们的研究表明,这种细菌基本上是通过关闭人体的免疫反应,在人体呼吸道组织中诱导出一种耐受状态而持续存在的。"这种细菌有一种独特的能力,能与免疫系统"对话"并使其失活,让免疫系统相信它不存在威胁。研究人员在实验室中制备了人类鼻腔组织,将其培育成类似于人类呼吸道表面的组织,然后监测基因表达在 14 天"感染"过程中的变化。他们发现,随着时间的推移,炎症分子的产生非常有限,而通常情况下,细菌感染人体细胞后数小时内就会产生炎症分子。"然后,我们同时使用了活的和死的流感嗜血杆菌,结果表明,死细菌会导致炎症制造者快速产生,而活细菌则会阻止这种情况。这证明细菌能主动降低人体免疫反应。"该研究成果的共同作者、昆士兰大学医学院儿科呼吸内科医生彼得-斯利(Peter Sly)名誉教授说,研究结果表明了流感嗜血杆菌是如何引起慢性感染的,流感嗜血杆菌基本上生活在构成呼吸道表面的细胞中。斯利说:"这是一种罕见的行为,许多其他细菌都不具备这种行为。如果局部免疫力下降,例如在病毒感染期间,细菌可能会'取而代之',造成更严重的感染"。这些发现将有助于今后开发新的治疗方法,通过帮助免疫系统识别和杀死这些细菌来预防这些感染。卡普勒教授说:"我们将研究如何开发治疗方法,提高免疫系统在病原体造成进一步损害之前发现并消灭它的能力。"这项研究发表在《PLOS病原体》上。编译自/ScitechDaily ... PC版: 手机版:

封面图片

新研究发现了噬菌体破坏细菌防御系统的一种新方法

新研究发现了噬菌体破坏细菌防御系统的一种新方法 一项突破性研究揭示了噬菌体蛋白的新调控机制,为了解细菌防御机制和开发基于噬菌体的疗法开辟了新途径。新发现推动了抗击危险细菌的重大进展。由奥塔哥大学的彼得-菲纳兰教授领导的一个国际科学家小组研究了噬菌体(一种感染细菌的病毒)所使用的一种特殊蛋白质。对细菌和噬菌体之间这种微观军备竞赛的研究非常重要,因为它可以开发出抗生素的替代品。这项研究发表在著名的国际期刊《自然》(Nature)上,分析了噬菌体在部署抗CRISPR时使用的一种蛋白质,这是它们阻断细菌CRISPR-Cas免疫系统的方法。领衔作者、奥塔哥微生物学和免疫学系的尼尔斯-伯克霍尔茨(Nils Birkholz)博士说,了解噬菌体如何与细菌相互作用,是在人类健康或农业领域利用噬菌体对付细菌病原体的道路上迈出的重要一步。"具体来说,我们需要了解细菌用来保护自己免受噬菌体感染的防御机制,如CRISPR,这与我们利用人体免疫系统抵御病毒的方式并无二致,以及噬菌体如何抵御这些防御机制。例如,如果我们知道噬菌体是如何杀死特定细菌的,这就有助于确定适当的噬菌体作为抗菌剂使用。更具体地说,我们必须了解噬菌体在感染后是如何控制它们的反防御武器库(包括抗CRISPR)的我们必须了解噬菌体是如何调控在与细菌的战斗中有用的基因的表达的。"这项研究揭示了噬菌体在部署抗CRISPRs时需要多么谨慎。一种特定的噬菌体蛋白质有一个在许多参与基因调控的蛋白质中非常常见的部分或结构域;众所周知,这个螺旋-翻转-螺旋(HTH)结构域能够特异性地结合DNA序列,并根据具体情况打开或关闭基因。这种蛋白质的 HTH 结构域用途更为广泛,并表现出一种以前未知的调控模式。它不仅能利用这个结构域结合 DNA,还能结合其RNA转录物,RNA转录物是 DNA 序列和其中编码的抗CRISPR 之间的中介分子。由于这种蛋白质参与调节抗CRISPR的产生,这意味着这种调节具有更多层次它不仅通过DNA结合机制发生,还通过我们发现的结合信使RNA的新机制发生。这一发现可能会对基因调控的理解产生重大影响。"在了解噬菌体如何躲避 CRISPR-Cas 的防御并在一系列应用中杀死目标细菌方面,揭示这种意想不到的复杂调控机制是一项重要进展。这一发现尤其令科学界振奋,因为它展示了一个经过深入研究的蛋白质家族的新型调控机制。HTH 结构域自 20 世纪 80 年代初被发现以来就一直受到深入研究,因此我们最初认为我们的蛋白质会像其他具有 HTH 结构域的蛋白质一样发挥作用,但当我们发现这种新的作用模式时,我们感到非常惊讶。这一发现有可能改变该领域对这一重要而广泛的蛋白质结构域的功能和机制的看法,并可能对我们理解基因调控产生重大影响。"编译自/ScitechDaily ... PC版: 手机版:

封面图片

性寄生有助于深海𩽾𩾌鱼适应黑暗的海洋深处 对免疫医学研究有潜在启示

性寄生有助于深海𩽾𩾌鱼适应黑暗的海洋深处 对免疫医学研究有潜在启示 深海𩽾𩾌鱼的独特繁殖策略作为地球上最广阔的生态系统,深海可能是一个很难找到伴侣的地方。然而,科学家发现,一些深海𩽾𩾌鱼已经形成了一种非凡的繁殖策略,确保它们一旦在浩瀚的水域中找到伴侣,就能终生保持联系(长在一起了)。这些𩽾𩾌鱼被称为 Ceratioids,它们通过性寄生繁殖后代,微小的雄𩽾𩾌会吸附在大得多的雌𩽾𩾌身上进行交配。在某些物种中,雄鱼会咬住雌鱼,一旦交配完成,雄鱼就会放开雌鱼。在其他物种中,雄性永远与雌性融合在一起。在一个称为强制性寄生的过程中,雄性的头部会溶入雌性体内,它们的循环系统也会合并。雄性变成了一个永久性的精子生产性器官。研究进化优势在5月23日发表在《当代生物学》(Current Biology)杂志上的一项新研究中,耶鲁大学的研究人员探讨了性寄生如何与鱼类的其他相关特征协同作用,影响垂钓者鱼类的多样化。研究人员表示,了解性寄生的进化过程具有重要意义,有朝一日可以为医学进步提供参考。𩽾𩾌鱼免疫基因组退化的进化背景。图片来源:Current Biology/Brownstein et al.研究人员利用𩽾𩾌鱼基因组的遗传数据,展示了一些复杂的特征(如性寄生)是如何帮助一些𩽾𩾌鱼类群从珊瑚礁等浅海栖息地漫游过渡到在"午夜区"黑暗、开阔的水域(阳光无法穿透的深海生态系统)中游泳的。耶鲁大学生态学与进化生物学系研究生、该研究的共同第一作者切斯-布朗斯坦(Chase D. Brownstein)说:"人们往往用单一性状来解释一群动物为何能在特定生态系统中茁壮成长,但在大多数生物中,几种独特的创新似乎能协同作用,开发新的栖息地。我们发现,包括性寄生所需的性状在内的一系列性状使得垂钓鱼能够在全球极端变暖时期入侵深海,当时地球上的海洋正处于生态动荡之中。"遗传学见解和对医学的影响在这项研究中,研究人员重建了深海物种的进化史。他们证明,在距今5000万年至3500万年前的古新世-始新世热极盛时期,𩽾𩾌鱼从底栖步行鱼(利用改良的鳍在浅海海底"行走")迅速过渡到深海游泳鱼。布朗斯坦说,研究人员最终无法推断出深海𩽾𩾌鱼的清晰进化树,因为各系之间的分化太快,导致各系之间的关系无法确定。但他们发现,性寄生的起源与𩽾𩾌鱼过渡到深海的过程相吻合,尽管他们无法确定是暂时性依附还是强制性寄生这两种寄生形式中的哪一种首先出现。为了实现性寄生,多种性状同时进化。例如,栉水母需要进化出极端的性二型,即大型雌性和小型雄性。它们还需要脱落适应性免疫系统攻击和消灭病原体的特化免疫细胞和抗体系统以便雌性宿主的身体不会排斥寄生的雄性。通过重建参与适应性免疫的关键基因的进化史,研究人员了解到,多个深海𩽾𩾌鱼类群趋同地退化了它们的适应性免疫,从而实现了性寄生。虽然随着深海𩽾𩾌鱼进入深海,它们的性寄生也在不断进化,但研究人员认为,性寄生并不一定是驱动𩽾𩾌鱼物种多样化的关键特征。不过,布朗斯坦说,性寄生确实能让𩽾𩾌鱼在午夜区取得成功。他说:"性寄生被认为对栖息在深海是有利的,因为深海是地球上最大和最同源的栖息地。一旦个体在那片广袤的海域找到了配偶,强制性的性寄生就能让它们永久地结合在一起,这似乎是深海𩽾𩾌进化的一个重要帮助。"该研究的资深作者、耶鲁大学文理学院生态学和进化生物学教授、耶鲁大学皮博迪博物馆宾厄姆海洋学脊椎动物馆馆长托马斯-近(Thomas Near)说,这项研究对人类健康具有潜在的影响。他说:"更好地了解深海𩽾𩾌鱼是如何丧失适应性免疫力的,有朝一日可能有助于医疗程序的进步,例如器官移植和皮肤移植,在这些程序中,抑制免疫力至关重要。这是未来医学研究的一个有趣领域。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

研究发现母乳中的蛋白质慧通过影响肠道细菌的组成提高后代的免疫力

研究发现母乳中的蛋白质慧通过影响肠道细菌的组成提高后代的免疫力 研究人员发现,母乳中缺乏一种关键补体蛋白的哺乳小鼠所哺育的幼鼠,其肠道微生物种群与用标准小鼠母乳哺育的幼鼠不同,这使它们极易受到腐蚀柠檬酸杆菌( 一种感染小鼠肠道的细菌)的感染,这种细菌类似于某些类型的导致腹泻的大肠杆菌,后者可以感染人类,但不能感染小鼠。研究人员的实验表明,小鼠母乳中的补体成分能直接消灭某些类型的肠道细菌,从而促进小鼠婴儿的健康。这种对肠道微生物群的重塑使婴儿小鼠不易受腐蚀柠檬酸杆菌感染,从而保护幼鼠免受某些传染病的威胁。这种重塑活动并不依赖于抗体,这与人们通常认为的补体成分的作用方式截然不同。研究人员还在单独的体外分析中证实,人类母乳中含有这些补体成分,它们在靶向特定细菌方面表现出类似的活性。综上所述,这些发现揭示了母乳如何发挥保护作用,防止某些细菌感染的机制。这项研究发表在《细胞》杂志上。研究资深作者、彭博学院生物化学与分子生物学系教授、博士万凤仪(Fengyi Wan)说:"这些发现揭示了母乳补体蛋白在塑造后代肠道微生物组成和保护后代早期肠道免受细菌感染方面的关键作用。这代表着我们对母乳保护机制的认识有了重要的扩展"。该研究的第一作者是万研究小组的助理科学家、博士徐冬青。母乳喂养的益处与补充蛋白质母乳喂养有许多已知和潜在的益处。它能为婴儿提供极佳的营养,似乎还能预防某些短期或长期疾病。众所周知,母乳还能通过共享来自母体的抗体和白细胞来帮助预防常见感染。母乳中还含有补体蛋白,它们可以与抗体协同或"互补"攻击细菌。血液中的补体蛋白一直是研究的重点,而母乳中的补体蛋白却很少被研究,直到现在它们的作用还不清楚。在这项新研究中,万和他的团队使用了缺乏关键补体基因的工程小鼠。他们发现,这种雌性小鼠的乳汁会使几周大的幼鼠即使是补体基因正常的幼鼠极易感染腐蚀柠檬酸杆菌而引发结肠炎,而且往往是致命的。与此相反,食用正常、含有补体的牛奶的幼鼠只表现出轻微和短暂的肠道感染症状。研究小组发现,母乳补体蛋白的这种保护作用取决于其塑造婴儿肠道微生物群的能力。补体蛋白能杀死肠道中的某些细菌种类,这种对微生物的清除创造了一种整体肠道环境,在这种环境中,如果存在腐蚀柠檬酸杆菌,有害炎症的可能性就会大大降低。"肠道微生物群对健康非常重要,"万说。"母乳中的互补蛋白对婴儿发育早期建立'保护性'肠道微生物群、促进婴儿健康和抵御病原体有着至关重要的作用"。影响和未来方向这项研究似乎也标志着基础免疫学的进步。尽管已知血液中的补体蛋白能够直接破坏细菌细胞,但人们一直认为补体蛋白通常是在特异性免疫反应中与抗体合作发挥作用的。然而,万和他的研究小组发现,母乳中的补体对细菌的活性并不需要抗体,而是一种非特异性免疫反应。这为许多新的研究打开了大门,例如,阐明母乳中特定的补体生物学特性,并将其与血液中的补体生物学特性进行比较,以及评估补体在抗体依赖性特异性免疫系统之外的作用。编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人