无阳极钠固态电池面世美国科学家最新研制出全球首个无阳极钠固态电池。这一成果有助开发出廉价且能快速充电的大容量电池,以用于电动汽车

无阳极钠固态电池面世 美国科学家最新研制出全球首个无阳极钠固态电池。这一成果有助开发出廉价且能快速充电的大容量电池,以用于电动汽车和电网。相关研究论文发表于最新一期《自然・能源》杂志。研究团队认为,新研制出来的钠电池结构稳定,可循环数百次。去除阳极并用钠代替锂,使新型电池的生产过程变得更加经济环保。创新性的固态设计也提高了电池的安全性。 (科技日报)

相关推荐

封面图片

科学家研制出第一种无阳极钠固态电池

科学家研制出第一种无阳极钠固态电池 根据发表在《Nature Energy》期刊上的一项研究,芝加哥大学的科学家研制出第一种无阳极钠固态电池。阳极会逐渐磨损,一旦磨损掉电池就没用了,无阳极不存在该问题;今天广泛使用的电池都是锂电池,而锂是稀缺性矿物质,相比下钠既丰富又价格便宜。钠电池、固态电池和无阳极电池都已经存在,但将三者组合起来还是第一次。研究人员研制出的这种新电池能稳定循环数百次,用钠代替锂使得其制造更便宜和环保,新的固态设计使其更安全。 via Solidot

封面图片

采用新型电沉积方法的全固态电池技术取得突破

采用新型电沉积方法的全固态电池技术取得突破 通过底部电沉积机制稳定锂金属阳极全固态电池的示意图。资料来源:POSTECH应对电池安全挑战在电动汽车和储能系统等各种应用中,二次电池通常依赖于液态电解质。然而,液态电解质的易燃性带来了火灾风险。这促使人们不断努力探索在全固态电池中使用固态电解质和金属锂(Li),从而提供更安全的选择。在全固态电池的运行过程中,锂被镀在阳极上,利用电子的运动产生电力。在充电和放电过程中,锂金属会经历失去电子、转化为离子、重新获得电子和电沉积回金属形态的循环过程。然而,锂的任意电沉积会迅速耗尽可用的锂,导致电池的性能和耐用性大幅降低。阳极保护的创新为解决这一问题,研究团队与浦项制铁 N.EX.T Hub 合作开发了一种由功能粘合剂(PVA-g-PAA)[2]组成的全固态电池阳极保护层。该层具有优异的锂转移特性,可防止随机电沉积并促进"底部电沉积"过程。这可确保锂从阳极表面底部均匀沉积。研究小组利用扫描电子显微镜(SEM)进行了分析,证实了锂离子的稳定电沉积和分离[3]。这大大减少了不必要的锂消耗。研究小组开发的全固态电池还证明,即使锂金属薄至 10 微米(μm)或更薄,也能长时间保持稳定的电化学性能。领导这项研究的 Soojin Park 教授表达了他的承诺,他说:"我们通过一种新颖的电沉积策略设计出了一种持久的全固态电池系统。通过进一步研究,我们的目标是提供更有效的方法来提高电池寿命和能量密度。在合作研究成果的基础上,浦项制铁控股公司计划推进锂金属阳极的商业化,这是下一代二次电池的核心材料。"说明电沉积通过电解液中的电流将金属沉积到浸没在电解液中的电极上的方法PVA-g-PAA聚(乙烯醇)-接枝-聚(丙烯酸)脱离脱离或分离,金属锂失去电子并转化为锂离子的现象编译自:ScitechDaily ... PC版: 手机版:

封面图片

中科院攻克固态电池技术难关:循环300次不衰减、力争2026年量产

中科院攻克固态电池技术难关:循环300次不衰减、力争2026年量产 全固态电池具有安全性高、稳定性好、能量密度高等优点,解决了传统有机电解液电池存在的寿命短、易燃、易爆等问题。其中,硫化物全固态锂电池具备高能量密度和高倍率性能,是电动汽车电源的最佳选择,因此吸引了世界各大车企的关注和投入,并发布了相关的量产计划。据介绍,该所的先进储能材料与技术研究组已成功制备了多层叠片软包电池,经过300次循环测试,其容量几乎没有衰减。同时,该所还正在加速技术的研发和验证过程,计划在2026年率先实现硫化物全固态电池的批量生产。目前,中科院青岛能源研究所已经建立了全固态电池的小试制备线,并成功研制出高电压、长寿命的软包全固态锂离子电池。经过1000次循环测试,其容量仍然保持在92%。目前,电池正在继续测试中,以满足4C倍率下的放电能力要求(根据丰田设定的标准,需循环1500次,容量保持80%)。 ... PC版: 手机版:

封面图片

加州大学圣地亚哥分校研发可自愈阴极固态锂硫电池 倍增电动汽车续航

加州大学圣地亚哥分校研发可自愈阴极固态锂硫电池 倍增电动汽车续航 固态锂硫电池是一种可充电电池,由固体电解质、锂金属阳极和硫阴极组成。这种电池具有能量密度更高、成本更低的优点,有望成为目前锂离子电池的理想替代品。与传统锂离子电池相比,它们每公斤可储存两倍的能量,换句话说,它们可以在不增加电池组重量的情况下,将电动汽车的续航里程增加一倍。此外,由于使用了丰富且易于获取的材料,它们不仅经济上可行,而且更环保。然而,锂硫固态电池的开发历来受到硫阴极固有特性的困扰。硫不仅是一种不良的电子导体,而且硫阴极在充电和放电过程中还会发生明显的膨胀和收缩,导致结构损坏以及与固体电解质的接触减少。这些问题共同削弱了阴极传输电荷的能力,影响了固态电池的整体性能和使用寿命。为了克服这些挑战,加州大学圣地亚哥分校可持续电力和能源中心的研究人员领导的团队开发出了一种新型阴极材料:一种由硫和碘组成的晶体。通过在结晶硫结构中加入碘分子,研究人员将阴极材料的导电性能大幅提高了 11 个数量级,使其导电性能比单纯的硫晶体高出 1000 亿倍。阴极材料从棕色粉末熔化成深紫红色液体,从而愈合。图片来源:David Baillot/加州大学圣地亚哥分校雅各布斯工程学院这项研究的共同资深作者、加州大学圣地亚哥分校纳米工程教授兼可持续电力与能源中心主任刘平说:"我们对这种新材料的发现感到非常兴奋。硫的导电性能大幅提高令人惊喜,在科学上也非常有趣。"此外,这种新型晶体材料的熔点很低,只有 65 摄氏度(149 华氏度),比一杯热咖啡的温度还要低。这意味着在电池充电后,阴极可以很容易地重新熔化,以修复因循环而受损的界面。这是解决阴极和电解液之间的固-固界面在反复充电和放电过程中发生累积性损伤的一个重要特性。这项研究的共同第一作者、加州大学圣地亚哥分校雅各布斯工程学院纳米工程教授 Shyue Ping Ong 说:"这种硫-碘阴极提出了一个独特的概念,可以解决锂-S 电池商业化的一些主要障碍。碘恰到好处地破坏了将硫分子结合在一起的分子间键,从而将其熔点降低到了"金锁区"既高于室温,又足够低,阴极可以通过熔化定期重新修复。""我们的新型阴极材料的低熔点使得修复界面成为可能,这是这些电池长期以来一直寻求的解决方案,"该研究的共同第一作者周建斌说,他曾是刘的研究小组的纳米工程博士后研究员。"这种新材料是未来高能量密度固态电池的有利解决方案"。为了验证新型阴极材料的有效性,研究人员构建了一个试验电池,并对其进行反复充放电循环。电池在超过 400 次循环中保持稳定,同时保留了 87% 的容量。这项研究的合著者、本田美国研究所首席科学家克里斯托弗-布鲁克斯(Christopher Brooks)说:"这一发现有可能通过大幅延长电池的使用寿命,解决固态锂硫电池问世所面临的最大挑战之一。电池只需提高温度就能实现自我修复,这可以大大延长电池的总寿命周期,为固态电池在现实世界中的应用开辟了一条潜在的途径。"该团队正致力于通过改进电池工程设计和扩大电池规格,进一步推动固态锂硫电池技术的发展。"虽然要实现可行的固态电池还有很多工作要做,但我们的工作是重要的一步,"刘说。"我们在加州大学圣地亚哥分校的团队与我们在国家实验室、学术界和工业界的研究合作伙伴之间的合作使这项工作成为可能。"编译自/scitechdaily ... PC版: 手机版:

封面图片

科学家研制出一种可以弯曲并浸泡在水中的太阳能电池

科学家研制出一种可以弯曲并浸泡在水中的太阳能电池 现在,一组科学家在《自然-通讯》(Nature Communications)上发表的研究成果恰恰做到了这一点。他们面临的挑战是克服以往设备的一个关键局限,即很难在不降低灵活性的情况下使其防水。光伏薄膜通常由几层组成。一层是有源层,它从太阳光中捕捉一定波长的能量,并利用这种能量将电子和"电子空穴"分离成阴极和阳极。然后,电子和空穴可以通过电路重新连接,产生电能。在以前的设备中,传输电子空穴的层通常是通过分层的方式依次形成的。不过,在目前的工作中,研究人员将阳极层(在本例中为银电极)直接沉积在活性层上,从而在各层之间形成更好的附着力。他们采用了热退火工艺,将薄膜暴露在摄氏85 度的空气中 24 小时。论文的第一作者熊思兴说:"形成这一层很有挑战性,但我们很高兴能完成这一任务,最终能制作出厚度仅为3微米的薄膜,我们期待看到测试结果。"测试结果令人鼓舞。首先,他们将薄膜完全浸泡在水中四个小时,发现它仍然保持了最初性能的 89%。然后,他们将薄膜在水下拉伸30%多达300次,结果发现即使受到这样的耐力测试,薄膜仍然保持了 96% 的性能。在最后的测试中,他们将薄膜放入洗衣机中进行循环洗涤,结果薄膜经受住了考验,这在以前是从未有过的。论文通讯作者之一 Kenjiro Fukuda 说:"我们所创造的是一种可以更广泛使用的方法。展望未来,通过提高设备在其他方面的稳定性,如暴露于空气、强光和机械应力,我们计划进一步开发我们的超薄有机太阳能电池,使其能够用于真正实用的可穿戴设备。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

普通岩石可帮助下一代电动汽车电池实现技术突破

普通岩石可帮助下一代电动汽车电池实现技术突破 丹麦技术大学(DTU)的研究人员 Mohamad Khoshkalam开发出了一种很有前途的固态电池新材料,可以满足容量、安全性、环保性和低成本等所有要求。这种材料主要由岩石中的元素组成,特别是钾和钠硅酸盐,它们是地壳中最丰富的矿物质。此外,这种材料无需使用钴等昂贵的金属,而目前锂离子电池的容量和寿命都需要钴。这种乳白色、薄如纸张的材料可作为电池内部出色的固态电解质层。传统的锂离子电池使用液态电解质,让锂离子在阴极和阳极之间流动,从而产生电流。然而,液态电解质有潜在泄漏等缺点。固态电解质更为安全,并能提高性能。Khoshkalam 的电解质还能在接近室温的 40°C 左右传导离子。这意味着使用这种材料的电池有可能在正常条件下制造,而不是在需要高度控制环境或极端高温的昂贵设施中制造。此外,这种材料不会对湿气产生负面反应。将电解质转化为可用的电池形式需要经过多个步骤。Khoshkalam 制成硅酸钾粉末,将其混合成溶液,然后擀成薄如纸的层。然后,将这些薄层模塑成长达 10 米的白色细长带,并仔细烘干。最后,这些带子被转移到一个特殊的手套箱环境中,与阳极和阴极组件组装成完整的固态电池单元。这些硅酸盐中的钾离子和钠离子比锂离子大一些,也重一些,因此它们不容易流动。不过,Khoshkalam 有一个未公开的"配方",可以增强它们的导电性,超过锂离子通常所能达到的导电性。他的初步测试表明,固态电解质具有很强的性能。当然,将这种材料转化为现实世界中的电动汽车电池还需要时间(甚至可能永远无法通过可行性测试)。与锂离子电池相比,该技术仍然是一项新技术,而锂离子电池经过二十多年才实现商业化,并且还在不断发展。在制造规模上存在挑战,而且需要针对固态电解质进行优化的新电池设计。尽管如此,Khoshkalam 的团队仍希望在几年内开发出演示电池,向公司展示这种材料的潜力。硅酸盐矿物覆盖了地球上 90% 的面积,因此,廉价、环保的电池材料基本上是无限供应的,有待开发。然而,如何兑现这一承诺,而不像之前的许多尝试那样被炒得沸沸扬扬,可能是最大的障碍。 ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人