前不久,麻省理工 Guangxuan Xiao 等人推出的 StreamingLLM能够在不牺牲推理速度和生成效果的前提下实现多

前不久,麻省理工 Guangxuan Xiao 等人推出的 StreamingLLM能够在不牺牲推理速度和生成效果的前提下实现多轮对话总共 400 万个 token 的流式输入,22.2 倍的推理速度提升。 但 StreamingLLM 使用原生 PyTorch 实现,对于多轮对话推理场景落地应用的低成本、低延迟、高吞吐等需求仍有优化空间。 因此,知名 AI 框架 Colossal-AI 开源了 ,基于 TensorRT 实现了 StreamingLLM,可以 进一步提升大模型推理性能 46%,为多轮对话推理提供了高效可靠的落地方案。

相关推荐

封面图片

麻省理工学院研究人员开发出对图像质量影响最小的超快速图像生成方法

麻省理工学院研究人员开发出对图像质量影响最小的超快速图像生成方法 图像生成人工智能通常采用一种称为扩散的过程,通过几个采样步骤来完善视觉输出,以达到最终希望"逼真"的结果。研究人员表示,扩散模型可以生成高质量的图像,但需要数十次前向传递。Adobe 研究中心和麻省理工学院的专家们正在引入一种名为"分布匹配蒸馏"(DMD)的技术。这一程序将多步扩散模型简化为一步图像生成解决方案。由此产生的模型可以生成与Stable Diffusion 1.5 等"传统"扩散模型相当的图像,但速度要快上几个数量级。"我们的核心理念是训练两个扩散模型,不仅能估计目标真实分布的得分函数,还能估计假分布的得分函数。"研究人员称,他们的模型可以在现代 GPU 硬件上每秒生成 20 幅图像。上面的视频短片重点介绍了 DMD 与 Stable Diffusion 1.5 相比的图像生成能力。标清每幅图像需要 1.4 秒,而 DMD 只需几分之一秒就能生成类似的图像。虽然在质量和性能之间有所权衡,但最终结果仍在普通用户可接受的范围之内。该团队发表的关于新渲染方法的文章展示了使用 DMD 生成图像结果的更多示例。它比较了稳定扩散和 DMD,同时提供了生成图像的重要文字提示。主题包括通过虚拟数码单反相机镜头取景的一只狗、多洛米蒂山脉、森林中一只神奇的鹿、一只鹦鹉宝宝的 3D 渲染、独角兽、胡须、汽车、猫,甚至更多的狗。分布匹配蒸馏法并不是第一种用于生成人工智能图像的单步方法。Stability AI 公司开发了一种被称为逆向扩散蒸馏(ADD)的技术,用于实时生成 100 万像素的图像。该公司通过 ADD 训练其 SDXL Turbo 模型,在单个 NVIDIA A100 AI GPU 加速器上实现了仅 207 毫秒的图像生成速度。Stability 的 ADD 采用了与麻省理工学院的 DMD 类似的方法。 ... PC版: 手机版:

封面图片

AMIE是一个基于大语言模型(LLM)的研究型AI系统,用于医学诊断推理和对话。它通过真实世界的数据集进行训练,包括医学推理、医

AMIE是一个基于大语言模型(LLM)的研究型AI系统,用于医学诊断推理和对话。它通过真实世界的数据集进行训练,包括医学推理、医学总结和真实世界的临床对话。 AMIE使用了一种新的自弈仿真对话学习环境,可以在大量的疾病条件、专科和患者环境下提高诊断对话的质量。 研究人员设计了一项随机双盲交叉研究,使用经验证的患者角色扮演者通过在线多轮同步文本聊天与执业医生或AMIE系统进行虚拟远程客观结构化临床考试(OSCE)。 在149个不同科室的病例中,与20名初级保健医生相比,AMIE在诊断准确性和咨询质量的多个方面表现更好,从专科医生和患者角色的视角看是这样。 AMIE作为辅助工具可显著提高临床医生解决复杂病例的诊断准确率,但AMIE有一定局限性,这项研究应谨慎解释,不能代表日常临床实践。需要更多研究来实现安全可靠的AI系统。 临床专业知识仍然短缺,AMIE是探索AI系统与熟练临床医生相当属性的未来愿景的尝试,但还需要大量科学研究。

封面图片

《小爱同学 2.0.0.231.zip》

《小爱同学 2.0.0.231.zip》 简介:小米推出的智能语音助手升级版本,集成先进AI技术提升交互体验,支持语音指令控制智能设备、信息查询及生活服务。此次更新优化了响应速度和多轮对话能力,适配更多IoT产品。 亮点:强化自然语言理解模块,新增方言识别功能;深度融入米家生态链,可跨平台协同操作;界面设计更简洁,隐私保护机制升级。 标签: #智能语音助手#AI交互#小米生态#智能家居#多设备协同#隐私安全#版本更新 更新日期:2025-04-17 04:08:52 链接:https://pan.quark.cn/s/df169c64ee57

封面图片

科大讯飞:明日发布星火认知 AI 大模型 V1.5,同步上线配套 App

科大讯飞:明日发布星火认知 AI 大模型 V1.5,同步上线配套 App 科大讯飞发布公告,宣布该公司将在 6 月 9 日 14 点召开“讯飞星火认知大模型 V1.5 发布会”,会中将介绍 “讯飞星火认知大模型”的新进展,并发布配套“星火”App 及“星火助手中心”。 据介绍,“讯飞星火认知大模型”V1.5 开放式问答取得了一定突破,多轮对话和数学能力得到了升级,此外,模型的“文本生成”、“语言理解”、“逻辑推理能力”都得到了持续提升。 科大讯飞表示,星火认知大模型在学习、医疗、工业、办公等领域进一步的商业落地成果将在发布会中同时公布。同时,该公司还将推出星火 App,提升手机端交互体验。并推出星火助手中心,打造“覆盖工作及生活场景的快捷助手”,“开启人机协作共创的新生态”。 官方表示,从公司星火大模型内测到发布以来,获得市场认可,“中文已超越 ChatGPT”,在“国内大模型中遥遥领先”,同时其在应用方面,公司拥有教育、医疗、金融、汽车等行业数据积累,并有望通过 AI 模型接入提升项目或单品客单价。 来自:雷锋 频道:@kejiqu 群组:@kejiquchat 投稿:@kejiqubot

封面图片

iOS 18首个正式版无缘:曝苹果AI Siri跳票至2025年

iOS 18首个正式版无缘:曝苹果AI Siri跳票至2025年 公开资料显示,从2011年到现在,苹果Siri基本没有太大变化,除了呼出指令从“hey Siri”简化为“Siri”之外,很难从体验上给予用户新鲜感。Siri的智能化程度相当有限,但随着AI时代的到来,苹果将会基于类似于ChatGPT一样的自然语言模型实现全新的智能助理,让用户能够与Siri展开多轮对话。据悉,苹果工程师团队需要大量时间来重构Siri的底层,因为苹果不会在WWDC上介绍Siri的各项全新功能。按照苹果规划,2025年的iOS 18将会内置更高级的AI Siri,届时Siri的响应生成能力会有大幅提升,它将深度理解用户的需求,智能整合联系人、公司、日程活动、地点、日期等信息,让对话和工作更加自然、高效。 ... PC版: 手机版:

封面图片

AI推理速度提升超10倍 Groq LPU能否取代英伟达GPU?

AI推理速度提升超10倍 Groq LPU能否取代英伟达GPU? 推理速度比GPU快10倍,功耗仅1/10据介绍,Groq的大模型推理芯片是全球首个LPU(Language Processing Unit)方案,是一款基于全新的TSA 架构的Tensor Streaming Processor (TSP) 芯片,旨在提高机器学习和人工智能等计算密集型工作负载的性能。虽然Groq的LPU并没有采用更本高昂的尖端制程工艺,而是选择了14nm制程,但是凭借自研的TSA 架构,Groq LPU 芯片具有高度的并行处理能力,可以同时处理数百万个数据流,并该芯片还集成了230MB容量的SRAM来替代DRAM,以保证内存带宽,其片上内存带宽高达80TB/s。根据官方的数据显示,Groq的LPU芯片的性能表现相当出色,可以提供高达1000 TOPS (Tera Operations Per Second) 的计算能力,并且在某些机器学习模型上的性能表现可以比常规的 GPU 和 TPU 提升10到100倍。Groq表示,基于其LPU芯片的云服务器在Llama2或Mistreal模型在计算和响应速度上远超基于NVIDIA AI GPU的ChatGPT,其每秒可以生成高达500个 token。相比之下,目前ChatGPT-3.5的公开版本每秒只能生成大约40个token。由于ChatGPT-3.5主要是基于NVIDIA的GPU,也就是说,Groq LPU芯片的响应速度达到了NVIDIA  GPU的10倍以上。Groq表示,相对于其他云平台厂商的大模型推理性能,基于其LPU芯片的云服务器的大模型推理性能最终实现了比其他云平台厂商快18倍。另外,在能耗方面,NVIDIAGPU需要大约10到30焦耳才能生成响应中的tokens,而Groq LPU芯片仅需1到3焦耳,在推理速度大幅提升10倍的同时,其能耗成本仅有NVIDIAGPU的十分之一,这等于是性价比提高了100倍。Groq公司在演示中展示了其芯片的强大性能,支持Mistral AI的Mixtral8x7B SMoE,以及Meta的Llama2的7B和70B等多种模型,支持使用4096字节的上下文长度,并可直接体验Demo。不仅如此,Groq还喊话各大公司,扬言在三年内超越NVIDIA。目前该公司的LPU推理芯片在第三方网站上的售价为2万多美元,低于NVIDIA H100的2.5-3万美元。资料显示,Groq 是一家成立于2016年人工智能硬件初创公司,核心团队来源于谷歌最初的张量处理单元(TPU)工程团队。Groq 创始人兼CEO Jonathan Ross是谷歌TPU项目的核心研发人员。该公司硬件工程副总裁Jim Miller 曾是亚马逊云计算服务AWS设计算力硬件的负责人,还曾在英特尔领导了所有 Pentium II 工程。目前该公司筹集了超过 6200 万美元。为何采用大容量SRAM?Groq LPU芯片与大多数其他初创公司和现有的AI处理器有着截然不同的时序指令集计算机(Temporal Instruction Set Computer)架构,它被设计为一个强大的单线程流处理器,配备了专门设计的指令集,旨在利用张量操作和张量移动,使机器学习模型能够更有效地执行。该架构的独特之处在于执行单元、片内的SRAM内存和其他执行单元之间的交互。它无需像使用HBM(高带宽内存)的GPU那样频繁地从内存中加载数据。Groq 的神奇之处不仅在于硬件,还在于软件。软件定义的硬件在这里发挥着重要作用。Groq 的软件将张量流模型或其他深度学习模型编译成独立的指令流,并提前进行高度协调和编排。编排来自编译器。它提前确定并计划整个执行,从而实现非常确定的计算。“这种确定性来自于我们的编译器静态调度所有指令单元的事实。这使我们无需进行任何激进的推测即可公开指令级并行性。芯片上没有分支目标缓冲区或缓存代理,”Groq 的首席架构师 Dennis Abts 解释道。Groq LPU芯片为了追求性能最大化,因此添加了更多SRAM内存和执行块。SRAM全名为“静态随机存取存储器”(Static Random-Access Memory)是随机存取存储器的一种。所谓的“静态”,是指这种存储器只要保持通电,里面储存的数据就可以恒常保持。相对之下,动态随机存取存储器(DRAM)里面所储存的数据则需要周期性地更新。自SRAM推出60多年来,其一直是低延迟和高可靠性应用的首选存储器,事实上,对于 AI/ML 应用来说,SRAM 不仅仅具有其自身的优势。SRAM 对于 AI 至关重要,尤其是嵌入式 SRAM,它是性能最高的存储器,可以将其直接与高密度逻辑核心集成在一起。目前SRAM也是被诸多CPU集成在片内(更靠近CPU计算单元),作为CPU的高速缓存,使得CPU可以更直接、更快速的从SRAM中获取重要的数据,无需去DRAM当中读取。只不过,当前旗舰级CPU当中的SRAM容量最多也仅有几十个MB。Groq之所以选择使用大容量的 SRAM来替代DRAM 内存的原因主要有以下几点:1、SRAM 内存的访问速度比 DRAM 内存快得多,这意味着 LPU 芯片更快速地处理数据,从而提高计算性能。2、SRAM 内存没有 DRAM 内存的刷新延迟,这意味着LPU芯片也可以更高效地处理数据,减少延迟带来的影响。3、SRAM 内存的功耗比 DRAM 内存低,这意味着LPU芯片可以更有效地管理能耗,从而提高效率。但是,对于SRAM来说,其也有着一些劣势:1、面积更大:在逻辑晶体管随着CMOS工艺持续微缩的同时,SRAM的微缩却十分的困难。事实上,早在 20nm时代,SRAM 就无法随着逻辑晶体管的微缩相应地微缩。2、容量小:SRAM 的容量比 DRAM 小得多,这是因为每个bit的数据需要更多的晶体管来存储,再加上SRAM的微缩非常困难,使得相同面积下,SRAM容量远低于DRAM等存储器。这也使得SRAM在面对需要存储大量数据时的应用受到了限制。3、成本高:SRAM 的成本比 DRAM要高得多,再加上相同容量下,SRAM需要更多的晶体管来存储数据,这也使得其成本更高。总的来说,虽然SRAM 在尺寸、容量和成本等方面具有一些劣势,这些劣势限制了其在某些应用中的应用,但是 SRAM 的访问速度比 DRAM 快得多,这使得它在某些计算密集型应用中表现得非常出色。Groq LPU 芯片采用的大容量 SRAM 内存可以提供更高的带宽(高达80TB/s)、更低的功耗和更低的延迟,从而提高机器学习和人工智能等计算密集型工作负载的效率。那么,与目前AI GPU当中所搭载的 HBM 内存相比,Groq LPU 芯片集成的 SRAM 内存又有何优势和劣势呢?Groq LPU 芯片的 SRAM 内存容量虽然有230MB,但是相比之下AI GPU 中的 HBM 容量通常都有数十GB(比如NVIDIA H100,其集成了80GB HBM),这也意味着LPU 芯片可能无法处理更大的数据集和更复杂的模型。相同容量下,SRAM的成本也比HBM更高。不过,与HBM 相比,Groq LPU 芯片的所集成的 SRAM 的仍然有着带宽更快(NVIDIA H100的HBM带宽仅3TB/s)、功耗更低、延迟更低的优势。能否替代NVIDIA H00?虽然Groq公布的数据似乎表明,其LPU芯片的推理速度达到了NVIDIA GPU的10倍以上,并且能耗成本仅是它十分之一,等于是性价比提高了100倍。但是,Groq并且明确指出其比较的是NVIDIA的哪款GPU产品。由于目前NVIDIA最主流的AI GPU是H100,因此,我们就拿NVIDIA H100来与Groq LPU来做比较。由于Groq LPU只有230MB的片上SRAM来作为内存,因此,如果要运行Llama-2 70b模型,即使将Llama 2 70b量化到INT8精度,仍然需要70GB左右的内存。即使完全忽略内存消耗,也需要305张Groq LPU加速卡才够用。如果考虑到内存消耗,可能需要572张Groq LPU加速卡。官方数据显示,Groq LPU的平均功耗为185W,即使不计算外围设备的功耗,572张Groq LPU加速卡的总功耗也高达105.8kW。假设一张Groq LPU加速卡的价格为2万美元,因此,购买572张卡的成本高达1144万美元(规模采购价格应该可以更低)。根据人工智能科学家贾扬清分享的数据显示,目前,数据中心每月每千瓦的平均价格约为20美元,这意味着572张Groq LPU加速卡每年的电费为105.8*200*12=25.4万美元。贾扬清还表示,使用4张NVIDIA H100加速卡就可以实现572张Groq LPU一半的性能,这意味着一个8张H100的服务器的性能大致相当于572张Groq LPU。而8张H100加速卡... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人