NASA 公布了韦伯望远镜拍摄到的迄今为止宇宙最深最清晰的红外图像。| 这个网站可以比对哈珀和韦伯望远镜拍摄的照片,可以非常直观

None

相关推荐

封面图片

韦伯望远镜首次直接拍摄到系外行星的图像

韦伯望远镜首次直接拍摄到系外行星的图像 韦伯太空望远镜首次直接拍摄到一颗系外行星的图像。这颗被命名为 HIP 65426 b 的系外行星是一颗不宜居住的气态巨行星。它的质量是木星的 6 到 12 倍,年龄在 1500 万年到 2000 万年之间。天文学家 2017 年利用欧洲南方天文台在智利的甚大望远镜发现了这颗行星。韦伯望远镜如今拍摄到这颗行星的更多细节。由于地球大气散发的红外辐射干扰,这些细节无法从地面拍摄到。拍摄 HIP 65426 b 直接图像的挑战之处在于,它比所环绕的恒星暗得多,在近红外波段辐射亮度不足所环绕的恒星的万分之一,在中红外波段辐射亮度不足千分之一。望远镜的近红外相机(NIRCam)和中红外仪器(MIRI)均配备了日冕仪。这种设备可以遮挡恒星光芒,使望远镜得以拍摄到行星。 这张图像显示了系外行星HIP 65426 b在不同的红外波段,如詹姆斯·韦伯太空望远镜所见:紫色显示NIRCam仪器在3.00微米处的视图,蓝色显示NIRCam仪器4.44微米处的视图,黄色显示MIRI仪器11.4微米处的视图,红色显示了MIRI仪器15.5微米处的MIRI仪器视图。由于不同的韦伯仪器捕获光的方式,这些图像看起来不同。每台仪器中都有一组被称为日冕仪的遮罩,它可以挡住主星的光,以便可以看到这颗行星。每张图像中的小白星标记了主恒星HIP 65426的位置,该位置已通过日冕图和图像处理减去。NIRCam图像中的条形是望远镜光学系统的伪影,而不是场景中的物体。 来源: 来自:雷锋 频道:@kejiqu 群组:@kejiquchat 投稿:@kejiqubot

封面图片

壮观!韦伯望远镜拍摄到天体景象“创生之柱”新图像 #抽屉IT

封面图片

韦伯望远镜探测到迄今发现最远的活跃超大质量黑洞

韦伯望远镜探测到迄今发现最远的活跃超大质量黑洞 科学家们利用韦伯望远镜对GN-z11进行研究,还发现了一些诱人的证据,证明在这个偏远星系的外围存在着群体III恒星。这些难以捉摸的恒星是宇宙中第一批发光的恒星,纯粹由氢和氦组成。虽然从未对这类恒星进行过明确的探测,但科学家们知道它们一定存在。现在,有了韦伯望远镜,发现它们似乎比以往任何时候都更接近了。这幅由韦伯的近红外相机(NIRCam)仪器拍摄的图像显示了 GOODS-North 星系场的一部分。右下方的拉线突出显示了GN-z11星系,它出现的时间距离宇宙大爆炸刚刚过去4.3亿年。图像显示了一个延伸部分,追踪着 GN-z11 宿主星系,以及一个中心源,其颜色与黑洞周围吸积盘的颜色一致。资料来源:NASA、ESA、CSA、STScI、Brant Robertson(加州大学圣克鲁兹分校)、Ben Johnson(剑桥大学天文学院)、Sandro Tacchella(剑桥大学)、Marcia Rieke(亚利桑那大学)、Daniel Eisenstein(剑桥大学天文学院)美国国家航空航天局(NASA)詹姆斯-韦伯太空望远镜(James Webb Space Telescope)的两个研究小组深入时空,研究了异常明亮的星系 GN-z11。这个星系最初是由美国国家航空航天局的哈勃太空望远镜探测到的,它是迄今为止观测到的最年轻、最遥远的星系之一,它是如此明亮,以至于科学家们都很难理解其中的原因。现在,GN-z11 透露了它的一些秘密。一个利用韦伯望远镜研究 GN-z11 的小组发现了第一个明确的证据,证明该星系的中央有一个超大质量黑洞,正在快速吸积物质。他们的发现使这个星系成为迄今为止发现的最远的活跃超大质量黑洞。英国剑桥大学卡文迪什实验室和卡弗里宇宙学研究所的首席研究员罗伯托-马约利诺解释说:"我们发现了超大质量黑洞附近常见的极致密气体。这些是GN-z11所在的黑洞正在吞噬物质的第一个明确信号。"利用韦伯望远镜,研究小组还发现了通常在吸积型超大质量黑洞附近观测到的电离化学元素的迹象。此外,他们还发现该星系正在释放出一股非常强大的风。这种高速风通常是由与剧烈吸积的超大质量黑洞相关的过程驱动的。同样来自卡文迪什实验室和卡弗里研究所的研究人员汉娜-于布勒(Hannah Übler)说:"韦伯的近红外相机(NIRCam)发现了一个延伸部分,它追踪着宿主星系,以及一个中央紧凑源,其颜色与黑洞周围吸积盘的颜色一致。"这些证据共同表明,GN-z11 内有一个 200 万太阳质量的超大质量黑洞,它正处于吞噬物质的非常活跃阶段,这也是它如此明亮的原因。第二个小组也是由马约利诺领导的,他们利用韦伯望远镜的近红外摄谱仪(NIRSpec),在围绕着GN-z11的光环中发现了一个气态氦团。马约利诺说:"除了氦之外,我们看不到其他任何东西,这表明这个团块一定是相当原始的。这是理论和模拟在这些时代特别大质量星系附近所预料到的在光晕中应该有原始气体的小块存留,这些气体可能会坍缩并形成群体III星团。"寻找前所未见的第三族群恒星几乎完全由氢和氦形成的第一代恒星是现代天体物理学最重要的目标之一。这些恒星预计质量很大、光度很强、温度很高。它们的预期特征是存在电离氦,而不存在比氦重的化学元素。第一批恒星和星系的形成标志着宇宙历史的根本性转变,在此期间,宇宙从黑暗和相对简单的状态演变成我们今天看到的高度结构化和复杂的环境。在未来的韦伯观测中,Maiolino、Übler 和他们的团队将对 GN-z11 进行更深入的探索,并希望加强对可能正在其光环中形成的 Population III 恒星的研究。《天文学与天体物理学》(Astronomy & Astrophysics)已接受发表关于GN-z11光环中原始气体团块的研究成果。对GN-z11黑洞的研究结果于2024年1月17日发表在《自然》杂志上。这些数据是作为JWST高级深河外星系巡天(JADES)的一部分获得的,JADES是NIRCam和NIRSpec团队的一个联合项目。詹姆斯-韦伯太空望远镜是世界上最重要的太空科学观测站。韦伯正在揭开太阳系的神秘面纱,眺望其他恒星周围的遥远世界,探索宇宙的神秘结构和起源以及我们在宇宙中的位置。韦伯望远镜是一项国际计划,由美国国家航空航天局(NASA)领导,其合作伙伴包括欧洲航天局(ESA)和加拿大航天局(Canadian Space Agency)。编译自:ScitechDaily ... PC版: 手机版:

封面图片

詹姆斯·韦伯太空望远镜拍摄的环状星云照片

詹姆斯·韦伯太空望远镜拍摄的环状星云照片 欧空局(ESA)近日发布官方博文,展示了由詹姆斯・韦伯太空望远镜拍摄的环状星云(Ring Nebula)照片。 该环形星云距离地球大约 2000 光年,是位于北半球天琴座的一个行星状星云,非常明亮,在极佳的观测条件下,通常只需使用简单的双筒望远镜即可从地球上辨别出来。 这种天体是红巨星在成为白矮星之前的演化过程中的最后阶段,将气体壳驱逐到周围并电离所形成的天体。欧空局表示环形星云内部大约有 2 万个富含氢分子的致密小球。来源 , 频道:@kejiqu 群组:@kejiquchat 投稿:@kejiqubot

封面图片

韦伯太空望远镜首次拍摄到了一个古老行星形成盘产生的风

韦伯太空望远镜首次拍摄到了一个古老行星形成盘产生的风 詹姆斯-韦伯太空望远镜(James Webb Space Telescope)的突破性观测揭示了行星形成盘中的气体风散布情况,加深了我们对行星形成动力学和盘演化的理解。(图片来源:ESO/M.Kornmesser以前曾拍摄过该星盘的图像,但还没有拍摄过来自旧星盘的风。了解气体的散逸时间非常重要,因为它可以限制新生行星消耗周围气体的时间。从侵蚀的 TCha 盘中获得的启示这一发现的核心是对TCha的观测,TCha是一颗年轻的恒星(相对于太阳而言),它被一个侵蚀性的圆盘包裹着,圆盘上有巨大的尘埃间隙,半径约为30个天文单位。天文学家首次利用惰性气体氖(Ne)和氩(Ar)的四条线对分散的气体(又称风)进行了成像,其中一条线是首次在行星形成盘中探测到的。Ne II]的图像显示,风来自星盘的一个扩展区域。该研究小组都是由 Ilaria Pascucci(亚利桑那大学)领导的 JWST 计划的成员,他们也有兴趣了解这一过程是如何发生的,以便更好地了解太阳系的历史和对太阳系的影响。纳曼说:"这些风可能是由高能恒星光子(恒星的光)驱动的,也可能是由编织行星形成盘的磁场驱动的。"来自SETI研究所的乌玛-戈尔蒂(Uma Gorti)数十年来一直在进行有关星盘散布的研究,并与她的同事一起预测了JWST现在探测到的强氩发射。她说:"很高兴终于能够解开风中的物理条件,了解它们是如何发射的。詹姆斯-韦伯太空望远镜(JWST)是一个尖端的天文观测站,旨在揭开宇宙的奥秘,从星系、恒星和行星的形成到系外行星潜在生命迹象的探测。它将于 2021 年 12 月发射升空,是未来十年中最重要的空间科学观测站,在哈勃太空望远镜的基础上拥有更强大的仪器和更广泛的观测能力。资料来源:美国国家航空航天局行星系统的演变像太阳系这样的行星系统中,岩石天体似乎比富含气体的天体要多。在太阳周围,这些天体包括内行星、小行星带和柯伊伯带。但科学家们早就知道,行星形成盘一开始的气体质量是固体质量的 100 倍,这就引出了一个急切需要解答的问题:大部分气体是何时以及如何离开行星盘/行星系统的?在行星系统形成的早期阶段,行星在年轻恒星周围的气体和微尘旋转盘中凝聚。这些微粒聚集在一起,形成越来越大的块状物,称为行星体。随着时间的推移,这些行星体碰撞并粘连在一起,最终形成行星。行星形成的类型、大小和位置取决于可用物质的数量以及在星盘中停留的时间。因此,行星形成的结果取决于星盘的演化和散布。同一小组在莱顿天文台的安德鲁-塞勒克博士领导的另一篇论文中,对恒星光子驱动的散布进行了模拟,以区分这两种散布。他们将这些模拟与实际观测结果进行了比较,发现高能恒星光子的散布可以解释观测结果,因此不能排除这种可能性。安德鲁介绍说:"事实证明,JWST 对所有四条线的同时测量对于确定风的特性至关重要,并帮助我们证明了大量气体正在被分散。根据研究人员的计算,每年扩散的气体相当于月球的质量。《天文》杂志目前正在审查一篇配套论文,该论文将详细介绍这些结果。变革性发现与未来展望2007 年,利用斯皮策太空望远镜首次在几个行星形成盘中发现了[Ne II]线,亚利桑那大学的项目负责人 Pascucci 教授很快将其确定为一种风的示踪剂;这改变了以了解盘气体扩散为重点的研究工作。利用 JWST 发现空间分辨[Ne II]和首次探测到[Ar III]可能会成为改变我们对这一过程的理解的下一步。此外,该研究小组还发现,T Cha 的内盘正在以几十年的极短时间尺度演化;他们发现 T Cha 的 JWST 光谱与早期的 Spitzer 光谱不同。这项正在进行的研究的第一作者、亚利桑那大学的谢承彦(Chengyan Xie)认为,这种不匹配可以用一个小的、不对称的内盘来解释,这个内盘在短短约17年的时间里就失去了部分质量。与其他研究一起,这也暗示着 T Cha 星的圆盘正处于演化的末期。我们也许能在有生之年目睹T Cha内盘所有尘埃质量的消散。这些发现的影响使人们对导致行星形成所必需的气体和尘埃分散的复杂相互作用有了新的认识。通过了解星盘散布背后的机制,科学家们可以更好地预测有利于行星诞生的时间和环境。研究小组的工作展示了 JWST 的强大功能,为探索行星形成动力学和周星盘的演化开辟了一条新的道路。编译自:ScitechDaily ... PC版: 手机版:

封面图片

韦伯望远镜拍摄到的标志性图像出现在美国邮政新邮票上

韦伯望远镜拍摄到的标志性图像出现在美国邮政新邮票上 美国邮政于2024年1月22日发行了一枚优先邮件邮票,图案是美国国家航空航天局(NASA)詹姆斯-韦伯太空望远镜(James Webb Space Telescope)的创世之柱(Pillars of Creation)。美国邮政的艺术总监格雷格-布里丁(Greg Breeding)设计了这枚邮票,图片由美国国家航空航天局(NASA)、欧洲航天局(ESA)、加空间局(CSA)和太空望远镜科学研究所(Space Telescope Science Institute)提供。图片来源:美国邮政这些图像是由韦伯望远镜的两台仪器拍摄的,其中包括由美国宇航局喷气推进实验室建造并负责发射管理的近红外成像仪。"美国国家航空航天局(NASA)的詹姆斯-韦伯太空望远镜是科学、工程和艺术的完美结合,它通过捕捉到的美丽图像揭示了宇宙中最伟大的秘密,"位于华盛顿的NASA总部科学任务局副局长尼古拉-福克斯(Nicola Fox)说。"有了这些邮票,全国各地的人们就可以用自己的指尖捕捉韦伯迷人的图像以及它们所代表的令人难以置信的科学,并知道自己也是这个开创性的天文学新时代的一部分。"美国邮政于2024年1月22日发行了一枚"优先邮件快递"邮票,突出展示了美国国家航空航天局詹姆斯-韦伯太空望远镜拍摄的船底座星云图像。美国邮政服务公司艺术总监格雷格-布里丁(Greg Breeding)设计了这枚邮票,图片由美国国家航空航天局、欧洲航天局、加空局和太空望远镜科学研究所提供。图片来源:美国邮政第一枚新邮票是一枚"优先邮件快递"邮票,图案是韦伯的近红外相机(NIRCam)拍摄的船底座星云中的"宇宙悬崖"图像,该星云位于大约7600光年之外。该图像显示了新出现的恒星苗圃和之前被隐藏起来的单个恒星。这一场景是韦伯望远镜于2022年7月首次曝光的全彩图像之一,展示了该望远镜窥探宇宙尘埃的能力,为我们揭示恒星的形成过程提供了新的视角。另一枚邮票是优先邮件邮票,图案是韦伯的中红外成像仪(MIRI)捕捉到的"创世之柱"图像。美国国家航空航天局的哈勃太空望远镜首次让这一熟悉的景观声名鹊起,韦伯拍摄到的图像显示,气体和尘埃簇拥着正在缓慢形成的恒星,这些恒星已经形成了上千年。创世之柱位于 6500 光年之外的巨大星云中。这些新邮票将与美国邮政于 2022 年发行的一枚永久邮票一起,以艺术家的数字插画韦伯为背景,衬以满天繁星。美国邮政发行的这枚邮票是为了纪念韦伯的成就,因为它将继续执行探索宇宙未知和研究宇宙历史各个阶段的任务。韦伯已经揭开了迄今为止观测到的一些最远星系、恒星和黑洞的神秘面纱;解开了一个关于早期宇宙的长期谜团;让我们比以往任何时候都更详细地了解了太阳系外行星的大气层;并为我们自己的宇宙后院提供了新的视角和见解。 ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人