:旨在构建和分享一个中文开放领域对话系统。

:旨在构建和分享一个中文开放领域对话系统。 通过互联网增强的指令微调,注入各种世界知识和对话能力,从而构建一个强大且实用的开放域对话系统。具有知识增强、个性化和多技能等特点。通过在多个任务上表现出良好的多任务泛化能力,胜过现有的中文对话系统。 目前的局限性包括:对话风格生成、推理能力较弱、对编码任务的表现不佳、可能会生成有害或偏见内容、多语言能力受限

相关推荐

封面图片

是一个结合了视觉基础模型的系统,使用户能够超越语言格式与 ChatGPT 交互,解决复杂的视觉任务。

是一个结合了视觉基础模型的系统,使用户能够超越语言格式与 ChatGPT 交互,解决复杂的视觉任务。 ChatGPT 正在吸引跨领域的兴趣,因为它提供了一种语言界面,具有跨多个领域的卓越对话能力和推理能力。 然而,由于 ChatGPT 是用语言训练的,它目前无法处理或生成来自视觉世界的图像。同时,Visual Foundation Models,如 Visual Transformers 或 Stable Diffusion,虽然表现出强大的视觉理解和生成能力,但它们只是特定任务的专家,具有一轮固定的输入和输出。 为此,我们构建了一个名为 \textbf{Visual ChatGPT} 的系统,其中包含不同的视觉基础模型,使用户能够通过以下方式与 ChatGPT 进行交互: 1)不仅发送和接收语言,还发送和接收图像 2)提供复杂的视觉问题或视觉编辑指令,需要多个 AI 模型进行多步骤协作。 3) 提供反馈并要求更正结果。

封面图片

| #指南LLMs,即大型语言模型(Large Language Models),是一种基于人工智能和机器学习技术构建的先进模型

| #指南 LLMs,即大型语言模型(Large Language Models),是一种基于人工智能和机器学习技术构建的先进模型,旨在理解和生成自然语言文本。这些模型通过分析和学习海量的文本数据,掌握语言的结构、语法、语义和上下文等复杂特性,从而能够执行各种语言相关的任务。LLM的能力包括但不限于文本生成、问答、文本摘要、翻译、情感分析等。 LLMs例如GPT、LLama、Mistral系列等,通过深度学习的技术架构,如Transformer,使得这些模型能够捕捉到文本之间深层次的关联和含义。模型首先在广泛的数据集上进行预训练,学习语言的一般特征和模式,然后可以针对特定的任务或领域进行微调,以提高其在特定应用中的表现。 预训练阶段让LLMs掌握了大量的语言知识和世界知识,而微调阶段则使模型能够在特定任务上达到更高的性能。这种训练方法赋予了LLMs在处理各种语言任务时的灵活性和适应性,能够为用户提供准确、多样化的信息和服务。

封面图片

:大规模、信息丰富、多样化的多轮对话数据,以方便构建具有通用会话能力的强大语言模型

:大规模、信息丰富、多样化的多轮对话数据,以方便构建具有通用会话能力的强大语言模型 为了保证生成质量,生成时采用了两个独立的 ChatGPT Turbo API,其中一个扮演用户角色生成查询,另一个生成响应。 该项目使用精心设计的提示来指导用户模型模仿人类用户行为并迭代调用这两个 API。生成的对话经过进一步的后处理和过滤。 由三个部门组成: Questions about the World:该部门的对话数据来自与现实世界中的概念、实体和对象相关的广泛查询。涵盖的主题广泛,涵盖技术、艺术和创业等领域。 写作与创作:该领域的对话数据由从零开始的写作/创作需求驱动,涵盖了 AI 助手在创作过程中可能协助完成的任何任务,从电子邮件撰写到制作叙事和剧本,超越。 Assistance on Existent Materials : 该板块的对话数据是基于现有材料生成的,包括但不限于改写、延续、总结和推理,涵盖主题多样。

封面图片

是一个正在开发的轻量级AI Agent,它也可以作为一个简单的开发框架,用于快速构建和试验各种AI Agent想法。特点如下:

是一个正在开发的轻量级AI Agent,它也可以作为一个简单的开发框架,用于快速构建和试验各种AI Agent想法。特点如下: 自然且高度容错的交互式代理调用树架构。 以最灵活的方式解析 LLM 输出,支持更多样的函数调用机制。 自构建、动态加载环境交互模块,提供无限的功能扩展潜力。 专为开源模型设计,但无缝支持 GPT-4 等商业模型。 支持对特定主题的深入调查。 自动化编程和脚本执行。它是一个包罗万象的编码器和熟练的系统管理工具,掌握所有系统命令类似于人工智能操作系统。 设计AIlice时的基本原则是: 以高度动态的提示构建机制丰富LLM行为; 尽可能分离不同的计算任务,利用传统计算中的递归和分治法来解决复杂问题。 代理应该能够双向交互。 让我们简要解释一下这些基本原则。 从最明显的层面开始,高度动态的提示结构使得代理不太可能陷入循环。外部环境新变量的涌入不断影响着法学硕士,帮助其避免陷入这种陷阱。此外,向法学硕士提供所有当前可用的信息可以大大提高其产出。例如,在自动化编程中,来自解释器或命令行的错误消息帮助法学硕士不断修改代码,直到获得正确的结果。最后,在动态提示构建中,提示中的新信息也可能来自其他智能体,作为一种联动推理计算的形式,使得系统的计算机制更加复杂、多样,能够产生更丰富的行为。 从实际的角度来看,分离计算任务是由于我们有限的上下文窗口。我们不能指望在几千个代币的窗口内完成一项复杂的任务。如果我们能够分解一个复杂的任务,以便在有限的资源内解决每个子任务,那将是一个理想的结果。在传统的计算模型中,我们一直利用这一点,但在以LLM为中心的新计算中,这并不容易实现。问题是,如果一个子任务失败,整个任务就有失败的风险。递归更具挑战性:如何确保每次调用时,LLM 都能解决部分子问题,而不是将整个负担传递给下一级调用?我们在AIlice中用IACT架构解决了第一个问题,第二个问题理论上不难解决,但很可能需要更聪明的LLM。 第三个原则是大家目前正在努力的:让多个智能代理交互、协作来完成更复杂的任务。这一原则的实现实际上解决了前面提到的子任务失败的问题。多智能体协作对于智能体运行中的容错能力至关重要。事实上,这可能是新计算范式与传统计算最大的区别之一:传统计算是精确且无错误的,仅通过单向通信(函数调用)来分配子任务,而新计算范式则容易出错且需要计算单元之间的双向通信来纠正错误。这将在下面有关 IACT 框架的部分中详细解释。

封面图片

:一个低代码引擎,基于这个引擎可以构建或者开发出不同领域的低代码平台。

:一个低代码引擎,基于这个引擎可以构建或者开发出不同领域的低代码平台。 特性: 跨端跨框架前端组件 支持在线实时构建、支持二次开发或被集成 直接生成可部署的源码,运行时无需引擎支撑 允许接入第三方组件、允许定制扩展插件 支持高代码与低代码,混合开发部署应用 平台接入 AI 大模型能力,辅助开发者构建应用

封面图片

,一个开源的轻量级知识分享、团队协同软件,可用于快速构建企业 Wiki 和团队知识分享平台。

,一个开源的轻量级知识分享、团队协同软件,可用于快速构建企业 Wiki 和团队知识分享平台。 提供方便的安装界面程序,无需任何手动操作。部署方便,使用简单。具备完善的系统权限管理,系统可以自定义角色,可为不同角色授予不同的权限

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人