: 开源的中英双语LLaMA模型,具有增强的推理能力。通过扩充中文词表和利用任务型数据进行训练,提升了理解和推理能力。

: 开源的中英双语LLaMA模型,具有增强的推理能力。通过扩充中文词表和利用任务型数据进行训练,提升了中文理解和推理能力。 在评测中,BiLLa在中英语言建模和推理任务上表现出色,优于其他模型,并与ChatGLM-6B相比在解题和代码得分方面更高。开发者可以使用BiLLa-7B-LLM和BiLLa-7B-SFT模型,并可通过提供的工具进行模型权重的还原和使用。评测结果显示,BiLLa在语言建模和各种问题类型上取得了良好的性能

相关推荐

封面图片

OpenAI 和 Meta 准备推出具有“推理”能力的新人工智能模型

OpenAI 和 Meta 准备推出具有“推理”能力的新人工智能模型 OpenAI 和 Meta 即将发布新的人工智能模型,他们表示这些模型将具备推理和规划的能力,这是在机器中实现超人认知的关键步骤。本周,OpenAI 和 Meta 的高管表示,他们正准备推出其大型语言模型的下一个版本。Meta 表示将在未来几周内开始推出 Llama 3,而微软支持的 OpenAI 表示,其下一个模型 GPT-5 将“很快”推出。Meta 人工智能研究副总裁乔尔•皮诺表示:“我们正在努力研究如何让这些模型不仅能说话,还能真正推理、规划……拥有记忆”。OpenAI 首席运营官布拉德•莱特卡普在接受记者采访时表示,下一代 GPT 将在解决推理等“难题”方面取得进展。他说:“我们将开始看到人工智能能够以更复杂的方式完成更复杂的任务。”“我认为,我们才刚刚开始触及这些模型推理能力的表面。” ()

封面图片

是开源中英双语对话模型 ChatGLM-6B 的第二代版本,在保留了初代模型对话流畅、部署门槛较低等众多优秀特性的基础之上,Ch

是开源中英双语对话模型 ChatGLM-6B 的第二代版本,在保留了初代模型对话流畅、部署门槛较低等众多优秀特性的基础之上,ChatGLM2-6B 引入了如下新特性: 更强大的性能:基于 ChatGLM 初代模型的开发经验,我们全面升级了 ChatGLM2-6B 的基座模型。ChatGLM2-6B 使用了 GLM 的混合目标函数,经过了 1.4T 中英标识符的预训练与人类偏好对齐训练,评测结果显示,相比于初代模型,ChatGLM2-6B 在 MMLU(+23%)、CEval(+33%)、GSM8K(+571%) 、BBH(+60%)等数据集上的性能取得了大幅度的提升,在同尺寸开源模型中具有较强的竞争力。 更长的上下文:基于 FlashAttention 技术,将基座模型的上下文长度(Context Length)由 ChatGLM-6B 的 2K 扩展到了 32K,并在对话阶段使用 8K 的上下文长度训练,允许更多轮次的对话。但当前版本的 ChatGLM2-6B 对单轮超长文档的理解能力有限,开发者会在后续迭代升级中着重进行优化。 更高效的推理:基于 Multi-Query Attention 技术,ChatGLM2-6B 有更高效的推理速度和更低的显存占用:在官方的模型实现下,推理速度相比初代提升了 42%,INT4 量化下,6G 显存支持的对话长度由 1K 提升到了 8K。 更开放的协议:ChatGLM2-6B 权重对学术研究完全开放,在获得官方的书面许可后,亦允许商业使用。

封面图片

一个开源的、支持中英双语的对话语言模型,基于 General Language Model (GLM) 架构,具有 62 亿参数

一个开源的、支持中英双语的对话语言模型,基于 General Language Model (GLM) 架构,具有 62 亿参数。结合模型量化技术,用户可以在消费级的显卡上进行本地部署(INT4 量化级别下最低只需 6GB 显存)。 ChatGLM-6B 使用了和 ChatGPT 相似的技术,针对中文问答和对话进行了优化。经过约 1T 标识符的中英双语训练,辅以监督微调、反馈自助、人类反馈强化学习等技术的加持,62 亿参数的 ChatGLM-6B 已经能生成相当符合人类偏好的回答。 |

封面图片

Mistral AI发布了新的开源模型。该模型以39B活跃参数实现141B参数规模,极大提升了模型规模与成本效率。

Mistral AI发布了新的开源模型。该模型以39B活跃参数实现141B参数规模,极大提升了模型规模与成本效率。 Mixtral 8x22B支持英语、法语、意大利语、德语和西班牙语,并具有强大的数学和编程能力。其支持函数调用,可大规模实现应用开发和技术栈现代化。 Mistral AI坚信开源的力量,Mixtral 8x22B以最宽松的Apache 2.0许可证发布。 Mistral AIModels追求卓越的成本效率。Mixtral 8x22B相较同规模模型,提供最佳的性能价格比。其稀疏激活可提升速度。 Mixtral 8x22B在推理、知识、多语言、编程、数学等多个基准测试上,表现优于其他开源模型。后续会发布指导版本,数学表现更佳。

封面图片

,一个可以让多人协作运行 Llama 和 BLOOM 等大型语言模型的项目

,一个可以让多人协作运行 Llama 和 BLOOM 等大型语言模型的项目 使用Llama 2 (70B),Falcon (180B),BLOOM (176B)(或其衍生版本)生成文本,并针对任务进行微调,可使用消费级GPU或Google Colab。 你可以加载模型的一小部分,然后加入一个网络,由其他人提供其余部分。Llama 2 (70B)的单批量推理速度可达6个标记/秒,Falcon(180B)的单批量推理速度可达4个标记/秒,足以用于聊天机器人和交互应用程序。

封面图片

复旦大学发布了一个引发轰动的大语言模型:这是一个支持中英双语和多种插件的开源对话语言模型,moss-moon系列模型具有160亿

复旦大学发布了一个引发轰动的大语言模型:这是一个支持中英双语和多种插件的开源对话语言模型,moss-moon系列模型具有160亿参数,在FP16精度下可在单张A100/A800或两张3090显卡运行,在INT4/8精度下可在单张3090显卡运行。MOSS基座语言模型在约七千亿中英文以及代码单词上预训练得到,后续经过对话指令微调、插件增强学习和人类偏好训练具备多轮对话能力及使用多种插件的能力。

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人