SSLRec是一个基于 PyTorch 的深度学习框架,用于通过自我监督学习技术增强的推荐系统。包含常用的数据集、用于数据处理、

SSLRec是一个基于 PyTorch 的深度学习框架,用于通过自我监督学习技术增强的推荐系统。包含常用的数据集、用于数据处理、训练、测试、评估和最先进的研究模型的代码脚本。 SSLRec提供了大量实用函数和易于使用的界面,简化了推荐模型的开发和评估。 突出特点 灵活的模块化架构。SSLRec 库采用模块化架构,可以轻松定制和组合模块。这使用户能够创建适合其特定需求和要求的个性化推荐模型。 多样化的推荐场景。SSLRec 库是一个多功能工具,适合有兴趣在不同推荐系统研究领域构建有效推荐模型的研究人员和从业者。 综合最先进的模型。我们的 SSLRec 框架为各种场景提供了广泛的 SSL 增强推荐模型。研究人员可以使用先进技术评估这些模型,并将其作为推动推荐系统领域创新的基础。 统一数据馈送和标准评估协议。SSLRec框架具有统一的数据馈送器和标准评估协议,可以轻松加载和预处理来自各种来源和格式的数据,同时确保对推荐模型的客观和公平评估。 丰富的实用功能。SSLRec 库提供了大量实用函数,可以简化推荐模型的开发和评估。这些功能结合了推荐系统的常见功能以及图操作、网络架构和损失函数的自监督学习。 易于使用的界面。我们提供了一个用户友好的界面,可以简化推荐模型的训练和评估。这使得研究人员和从业者能够轻松高效地试验各种模型和配置。 | #框架

相关推荐

封面图片

一个开源框架,用于进行数据污染攻击,针对推荐系统,旨在协助研究人员和实践者。

一个开源框架,用于进行数据污染攻击,针对推荐系统,旨在协助研究人员和实践者。 该框架提供了配置文件,允许选择和配置推荐模型和攻击模型。同时,它列出了一系列已实施的推荐模型和攻击模型,以及相关的研究论文。 用户可以选择实施攻击模型或推荐模型,并根据需要重新实现相应的函数。 | #框架

封面图片

Rust写的深度学习框架

Rust写的深度学习框架 该库旨在成为一个完整的深度学习框架,具有用 Rust 编写的极大灵活性。 目标是满足研究人员和从业者的需求,使其更容易实验、训练和部署你的模型。 特征: 1.灵活直观的自定义神经网络模块 2.无状态和线程安全正向传递 3.快速培训,全面支持,以及metricloggingcheckpointing 4.Burn-Tensor:支持自动比较、CPU 和 GPU 的张量库 刻录数据集:具有多个实用程序和源的数据集库 | #框架

封面图片

是一个基于Python和JAX的库,用于实现贝叶斯计算中常用的采样和变分推断算法。

是一个基于Python和JAX的库,用于实现贝叶斯计算中常用的采样和变分推断算法。 该库通过函数式编程方法提高了易用性、速度和模块化,使得统计‘原子’能够灵活组合以执行精确的贝叶斯推断。其核心特色在于支持构建复杂采样方法和推断模型,尤其适合需要尖端方法的用户、研究人员和有志于深入理解这些方法的人。 BlackJAX的设计原则强调了纯函数式结构以简化并行化,并提供了低级API,使用户能够实现定制的复杂方法。BlackJAX鼓励重新引入结构感知算法,以适应现代模型推断的需求。

封面图片

是一个用 Python 编写的开源 #框架 ,用于量化(又名监督流行率估计,或学习量化)。

是一个用 Python 编写的开源 #框架 ,用于量化(又名监督流行率估计,或学习量化)。 QuaPy 基于“数据样本”的概念,提供量化工作流最重要方面的实现,例如(基线和高级)量化方法、面向量化的模型选择机制、评估措施和评估协议用于评估量化方法。QuaPy 还提供常用数据集,并提供可视化工具以促进实验结果的分析和解释

封面图片

先进的智能agent框架,集成了数据处理和先进的机器学习工具,如大型语言模型(如OpenAI的GPT),专为以数据为中心的生产级

先进的智能agent框架,集成了数据处理和先进的机器学习工具,如大型语言模型(如OpenAI的GPT),专为以数据为中心的生产级项目设计,大大降低了创建能够理解和与大量数据进行有意义交互的智能自动化系统的门槛 | #框架

封面图片

机器学习/深度学习一切主题 (学习范式/任务/应用/模型/道德/交叉学科/数据集/框架/教程) 的资源列表汇总此列表包含380+

机器学习/深度学习一切主题 (学习范式/任务/应用/模型/道德/交叉学科/数据集/框架/教程) 的资源列表汇总此列表包含380+条目(2021年12月),这个项目的愿景是: 帮助初学者理解 #机器学习 的各种分支和最新进展; 帮助研究者快速熟悉、了解新的研究方向; 帮助工程师寻找合适的教程和工具以解决实际问题

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人