FAST 发现轨道周期最短的脉冲星双星

FAST 发现轨道周期最短的脉冲星双星 2023年6月21日,国际学术期刊《自然》在线发表中国科学院国家天文台姜鹏研究团队的一项重要成果。该团队利用中国天眼FAST发现了一个名为PSR J1953+1844(M71E)的双星,其轨道周期仅为53分钟,是目前发现轨道周期最短的脉冲星双星系统。双星系统如果距离很近,脉冲星会吞噬伴星的物质,使自身越转越快,两颗星的距离越靠越近,相互绕转速度也越来越快。随着双星系统演化,恒星被大量蚕食后质量变小,脉冲星难以继续吸积并把恒星推开,其相互绕转的速度也会变慢。来源 , 来自:雷锋 频道:@kejiqu 群组:@kejiquchat 投稿:@kejiqubot

相关推荐

封面图片

“中国天眼”FAST 已经发现了 883 颗脉冲星

“中国天眼”FAST 已经发现了 883 颗脉冲星 图片截自央视新闻频道那么,脉冲星究竟是什么?为什么要大费周章地找,找到以后又有什么用呢?今天咱们就来仔细聊聊,顺便再跟大家分享点关于 FAST 的小八卦。脉冲星是指疯狂闪烁的星吗?先说说“脉冲星”。从地球看来,脉冲星是周期性地闪烁电磁脉冲的天体,脉冲间隔极短,从几毫秒到上百秒不等。不过,脉冲星并不是真的在闪烁,所谓脉冲,只是脉冲星以发疯般的速度旋转造成的假象。那脉冲星是怎么来的呢?其实是恒星“内心拉扯”的结果。我们肉眼能看到的“正常”恒星,内部都有两股力量在相互抗衡:引力驱使恒星物质向核心坠落,而核聚变释放的能量则把物质向外推。核聚变的燃料总有用完的一天,所以引力总能最终赢得这场角力。当一颗大质量恒星(例如,超过 8 倍太阳质量)最终耗尽所有燃料时,它就会向中心坍缩,发生猛烈的内爆,再向外弥散,迸发出一朵绚烂的“烟花”。这个过程叫做“超新星爆发”。北宋至和元年(1054 年),金牛座的“天关”星宿附近爆发过一颗超新星,白天可见 23 天,夜晚可见 22 个月。这起超新星爆发被中国的天文学家记录下来,史称“天关客星”。尘烟散去,在恒星原来的位置,可能会留下一颗非常致密的天体中子星。在其内部,原子结构不复存在,电子被压入原子核,与质子结合为中子。中子星的质量超过 1.4 个太阳,直径却只有十几公里。换句话说,每立方厘米的中子星物质,相当于全球人类的质量总和!中子星还继承了恒星残余质量的旋转角动量。在同样的角动量下,转速与半径的平方成反比。我们每每看到,冰舞运动员在旋转时把双臂收拢或举到头顶,就会猛然滴溜溜地转得飞快。同理,当恒星坍缩为中子星后,转速会成亿倍地飙升。脉冲星的射电脉冲扫过地球。Michael Kramer制作中子星具有强磁场,驱动其周围的带电粒子,发出强烈的射电辐射束,从它的两个磁极喷涌而出。如果随中子星自转的辐射束正好扫过地球,我们就能测到周期性的射电脉冲,就好比某些迪厅的特效灯总是在转圈圈,虽然灯光一直开着,但从一个方向看过去就时亮时暗。嗯,这么一比喻,那脉冲星可以说属于是恒星的遗体在自己坟头蹦迪了……前面提过的天关客星,就留下了一颗周期 33 毫秒(每秒自转 30 圈)的脉冲星,抛散出的渐冷烟花则是著名的蟹状星云。蟹状星云。图源NASA在全球发现的 3000 多颗脉冲星中,绝大多数是中子星,但也有 2 颗是白矮星(还保有原子结构的低质量恒星遗骸):天蝎座 AR 和宝瓶座 AE。FAST 可不是“快”的意思大部分脉冲星在可见光波段没有显著辐射,而在射电波段看起来比较亮。幸运的是,在地球这边,大气层对射电波段相当优待,透明度极高,所以射电望远镜特别适合在地面上观测脉冲星。地球大气层对各波长电磁波的屏蔽。图源 NASA接下来就说说咱们的 FAST。FAST 的名字来自“500 米口径球面射电望远镜”(Five-hundred-meter Aperture Spherical radio Telescope)的英文缩写。这座巨型单碟射电望远镜坐落在贵州省平塘县大窝凼(dàng),依照喀斯特地貌的天然洼地而建,2011 年开工,2016 年落成,是目前世界第一大的全口径均有反射面的射电望远镜(俄罗斯的 RATAN-600 口径虽有 576 米,却只有细细一圈反射环)。FAST 鸟瞰。图源 FAST 官网顺便说说,大家可能觉得 FAST 这个缩写听起来很酷,而全称却显得太直白了。没办法,“缩写不明觉厉,全称真没创意”这是天文界的传统,比如 TMT 是“30 米望远镜”,VLT 是“甚大望远镜”,ELT 是“特大望远镜”,EELT 是“欧洲特大望远镜”。韦布空间望远镜听起来是不是还算正常?可它最初的名字其实是“下一代空间望远镜”(相对于哈勃而言)……为什么射电望远镜都这么大?这是因为在相同的分辨率需求下,要观测的波长越长,“锅”的口径就得越大,不然就看不清了。在红外波段工作的韦布望远镜比主攻可见光的哈勃望远镜口径要大(6.5 米 vs 2.4 米),而射电望远镜要观测的波段,比这俩还要高 5、6 个数量级,那是真非往大了整不可了,口径就是正义用在这里是一点都没错。细心的读者可能还有两个疑问:①球面实际上无法将遥远星光汇聚到单一焦点,得用抛物面才行,FAST 为何要做成球面望远镜?②一口大锅这么摆在地上,岂不是只盯着天顶一点,就算随着地球自转,也只能扫描天顶所在的这个圆?实际上,这是一个常见的误解,也是科普的时候使用简略类比带来的负面影响。因为形状的关系,我们很喜欢把各类射电望远镜称为“锅”。但是这样一来,我们的思维也会被误导,容易觉得 FAST 也像咱们家炒菜的大铁锅一样,硬邦邦一整个,形状不会改变,但实际上,FAST 的身段灵活得很。FAST 由 4450 片反射板拼成,通过电机驱动,这些反射板能够改变姿态,当一片区域的反射板在统一指挥下规律地调整,就能在“锅”里泛起一片“涟漪”,改变镜面的形状。经“FAST 之父”南仁东和团队的计算,只需和球面偏离 0.47 米,就可以把口径 300 米的球面改成抛物面,把射电信号聚焦在一点。所以,在任意时刻,FAST 只有一片口径 300 米的圆形工作区域。通过反射板的齐心协力地调整,这个工作区能在“锅”里自如“漂移”,所以可观测天区的范围相当广。倘若保持完整的 300 米口径,能从北纬 52.2°(工作区紧贴锅南沿)观测到南纬 0.6°(工作区紧贴锅北沿)。如果愿意牺牲一点有效口径,则可以覆盖北纬 65.8° 到南纬 14.2° 的天空。FAST 光路,黄色虚线是抛物面工作区·图源南仁东《FAST项目介绍》观测脉冲星有什么实际应用?FAST 发现这么多脉冲星,那么观测脉冲星有什么实际应用?它的用处还真不少。当脉冲星发来的信号穿越星际时,会被沿途的电离气体阻碍,造成延迟。路程越长,电离气体越多,迟到越厉害。如果知道了脉冲星离我们有多远,再通过精密测量延迟的程度,就能反推信号沿途的星际介质分布情况。影响脉冲星信号的还有磁场,当电磁信号经过磁场时,它的偏振属性会被改变,磁场越强,改变幅度越大。测量信号的偏振,能够反推信号沿途的磁场分布情况。当超大质量天体扰动时空时,会产生引力波,改变脉冲星信号到达我们的时间。所以通过精确测量脉冲星周期的起伏,可以探测引力波。倘若能发现脉冲星-黑洞双星系统,观测一个稳定输出的天体和一个扭曲时空的天体如何搅拌乾坤,就更能检验广义相对论的预言,大大推动基础物理研究。脉冲星的自转周期非常稳定,有些在长期表现上堪与原子钟媲美,并且它们“永不断电”,可比原子钟皮实多了。将脉冲星和原子钟结合起来,可以建立长时间稳定的精准时间系统,甚至用于星际导航。旅行者“地球之声”金唱片左下方以14颗脉冲星指示太阳系的方位。图源NASA最后总结一下,FAST和它发现的脉冲星们,会帮助我们更好地认识宇宙,而这些发现,说不定有朝一日还能够帮助人类在星海中航行。 ... PC版: 手机版:

封面图片

天文学家发现中子星环绕“不应该存在”的神秘天体运行

天文学家发现中子星环绕“不应该存在”的神秘天体运行 艺术家眼中的神秘双星系统 MPIfR; Daniëlle Futselaar ()天文学家利用南非的 MeerKAT 射电望远镜,在哥伦布星座一个名为 NGC 1851 的球状星团中发现了一颗脉冲星,从而揭开了这个谜团。脉冲星是一种具有强磁场的中子星,它产生的无线电波像灯塔的光束一样向四周扫射。当这些电波锥碰巧面向地球时,我们就会看到它们在有规律地跳动,脉冲星也因此而得名。天文学家利用南非的 MeerKAT 射电望远镜,在哥伦布星座一个名为 NGC 1851 的球状星团中发现了一颗脉冲星,从而揭开了这个谜团。脉冲星是一种具有强磁场的中子星,它产生的无线电波像灯塔的光束一样向四周扫射。当这些电波锥碰巧面向地球时,我们就会看到它们在有规律地跳动,脉冲星也因此而得名。由于这些信号是如此稳定和可预测,天文学家可以研究它们的时间,并计算出有关其周围环境的惊人信息量。在这种情况下,他们发现这颗脉冲星与另一个天体一起运行这时事情开始变得诡异起来。"当我们查看NGC 1851的哈勃图像时,我们在那个位置什么也没看到,"该研究的合著者Prajwal Voraganti Padmanabh说。"因此,与脉冲星在轨道上运行的天体不是一颗正常的恒星,而是一颗坍缩恒星的密度极高的残余物。"众所周知,这些坍缩的恒星残骸有两种形式:要么是另一颗中子星,要么是一个黑洞。但有一个问题这个天体被发现质量太大,不可能是一颗中子星,但质量不够大,不可能是一个黑洞。根据模型,中子星总是小于大约两个太阳质量,而黑洞永远不会轻于大约五个太阳质量。对宇宙的观测也证明了这一点紧凑的天体总是属于其中一类。总之,直到现在。新发现的这个天体的质量大约是太阳质量的 2.1 到 2.7 倍,完全符合既定的"质量差距"。这意味着,它可能是已知最重的中子星,也可能是已知最轻的黑洞或许,完全是另一种东西。这项研究的合著者保罗-弗莱雷(Paulo Freire)说:"不管这个天体是什么,这都是一个令人兴奋的消息。如果它是一个黑洞,这将是已知的第一个脉冲星/黑洞系统,几十年来这一直是脉冲星天文学的圣杯。如果它是一颗中子星,这将对我们理解物质在这种惊人密度下的未知状态产生根本性影响。"研究人员提出,这个奇怪的系统实际上是由之前的两个双星系统形成的。其中一个包含两颗中子星,它们相撞后合并成一个小于平均水平的黑洞。而另一个系统则包含一颗中子星,它与另一颗恒星的轨道很近,前者从后者身上汲取物质。这个过程在宇宙中很常见,它将角动量传递给中子星,使其变成一颗快速旋转的脉冲星。另一颗恒星则变成了被称为白矮星的死壳。最终,黑洞闯入了双星系统,三个天体的复杂运动导致白矮星被抛出。这就形成了今天看到的脉冲星/黑洞系统。这并不是在质量间隙中发现的第一个天体。2019 年,引力波探测器捕捉到了一个 23 个太阳质量的黑洞吞食2.6 个太阳质量物体的信号。由于这是在天体被摧毁后才发现的,我们只能从中了解到这么多。值得庆幸的是,NGC 1851 有一个活着的黑洞,我们可以继续研究它。这项研究的合著者阿鲁尼玛-杜塔(Arunima Dutta)说:"我们对这个系统的研究还没有结束。揭开伴星的真实面目将是我们了解中子星、黑洞以及黑洞质量间隙中可能潜藏的其他东西的一个转折点!"这项研究发表在《科学》杂志上。下面的视频展示了该系统的拟议形成过程。 ... PC版: 手机版:

封面图片

耶鲁研究发现双星系统中的气候温和行星比以前已知的要多

耶鲁研究发现双星系统中的气候温和行星比以前已知的要多 如果卢克-天行者的童年是在一个更温和的塔图因星球上长大,那么他的童年可能就不会那么严酷就像耶鲁大学领导的一项新研究中确定的那样。据该研究的作者称,双星系统换句话说,有两个太阳的双星系统中的气候友好型行星比以前已知的要多。他们说,这可能表明,至少在某些方面,宇宙倾向于有序排列,而不是混乱错位。在这项研究中,研究人员观察了双星系统中的行星在双星系统中,单个行星围绕一颗主恒星运行,附近的第二颗恒星则围绕整个系统运行。(星球大战》电影中虚构的沙漠行星塔图因(Tatooine)就位于双星系统中)。耶鲁大学文理学院天文学助理教授、这项新研究的主要作者马莱娜-赖斯(Malena Rice)说:"我们首次展示了一个意想不到的堆积系统,在这个系统中,所有的东西都是对齐的。这项新研究于2月22日发表在《天文学杂志》(The Astronomical Journal)上。行星的运行方向与第一颗恒星的旋转方向完全一致,而第二颗恒星则在与行星相同的平面上环绕该系统运行"。赖斯的研究小组利用各种资料来源,包括盖亚DR3高精度恒星天体测量目录、美国宇航局系外行星档案的行星系统综合参数表以及系外行星自旋轨道角测量TEPCat目录,创建了双星系统中行星的三维几何图形。研究人员发现,在他们研究的 40 个系统中,有 9 个系统实现了"完美"对齐。赖斯说:"这可能表明,行星系统喜欢向有序的构型推进。这对在这些系统中形成生命也是个好消息。排列方式不同的恒星伴星可能会对行星系统造成严重破坏,使其倾覆或随着时间的推移使行星快速变热。"那在气候更加温和的塔图因,世界会变成什么样呢?在一年中的某些季节,白天会持续不断,一颗恒星照亮地球的一侧,而另一颗恒星则照亮地球的另一半。但阳光并不总是炽热的,因为其中一颗恒星离地球更远。在一年中的其他季节,两个太阳会照亮地球的同一侧,其中一个太阳看起来比另一个大得多。编译自:ScitechDaily ... PC版: 手机版:

封面图片

天文学家发现迄今最小恒星 半径仅约地球7倍

天文学家发现迄今最小恒星 半径仅约地球7倍 该双星系统由一颗质量为0.74倍太阳质量的碳氧白矮星与一颗质量约为太阳0.33倍的热亚矮星组成。该热亚矮星的半径仅有地球的7倍左右,代表了人类目前发现的体积最小的恒星。这样一对极短轨道周期的双星能够在毫赫兹频段产生强的引力波辐射,有望被未来的空间引力波天文台如LISA、天琴以及太极显著探测到。需要特别指出的是,该双星系统的发现和研究首次验证了通过二次共有包层抛射演化形成低质量热亚矮星的理论通道(由中国科学院云南天文台韩占文院士团队于2003年提出)。基于对热亚矮星形成通道的详细星族合成的研究,理论预言通过二次共有包层抛射通道形成的热亚矮星中,应该存在少部分质量低至0.32-0.36倍太阳质量的亚类。这些低质量的热亚矮星通过点燃非简并氦核形成,它们与被广泛认知的通过氦闪点燃简并氦核形成的热亚矮星(约0.45倍太阳质量)具有截然不同的质量分布。在经历第二次共有包层的物质抛射后,这些包含一颗白矮星的热亚矮星双星系统,通过引力波辐射可演化形成轨道周期短至20分钟的极短周期双星系统。但在TMTS巡天观测发现之前,国际上并未观测到完全符合上述观测性质的白矮星热亚矮星双星系统。TMTS观测系统是王晓锋团队在马化腾基金以及清华大学支持下,建成的一架独特设计的多镜筒光学巡天设备。自2020年正式运行以来,该系统以1分钟的观测频率凝视北半球的宇宙星空。截至2023年底,TMTS累计获得了超过2700万颗恒星的密集采样光变数据,包含大量高价值的短周期变源,TMTS J0526便是其中光变周期最短的系统之一。在发现该源之后,团队利用位于美国夏威夷的10米口径Keck望远镜和位于西班牙拉帕尔玛岛的10.4米口径GTC望远镜对该源进行了高时间分辨的连续光谱观测,并且使用丽江2.4米望远镜进行时序测光观测。结合高频采样观测得到的光变曲线以及光谱视向速度变化,研究团队分析得出,TMTS J0526是一颗轨道周期仅有20.5分钟的椭变双星,其中更大、更亮的子星(即可见星)在另一颗更加致密白矮星(不可见星)的潮汐引力作用下发生形变。艺术家绘制的TMTS J0526双星系统(北京天文馆 喻京川)。图中较大的那颗是热亚矮星,远处较小的那颗是其白矮星伴星。课题组供图通过分析亮度、表面引力、有效温度及质量半径关系表明可见星是一颗低质量、薄包层的热亚矮星。该双星系统包含的低质量热亚矮星、白矮星伴星以及极短的轨道周期均与二次共有包层抛射通道形成低质量热亚矮星(双星)的理论预言相符合。这是TMTS项目继发现18.9分钟蓝色大振幅脉动变星之后,研究成果第二次发表在该期刊。相关论文信息:https:// ... PC版: 手机版:

封面图片

天文学家在NGC 1851星团中发现了一个难以被分类的天体系统

天文学家在NGC 1851星团中发现了一个难以被分类的天体系统 中子星是宇宙中密度最大的天体。它们像原子核一样紧凑,却又像一座城市一样大,突破了我们对极端物质理解的极限。中子星越重,就越有可能最终坍缩成为密度更大的物体:黑洞。假定大质量伴星是一个黑洞,该系统的艺术印象图。最亮的背景恒星是它的轨道伴星射电脉冲星 PSR J0514-4002E。两颗恒星相距 800 万公里,每 7 天绕对方一周。图片来源:Daniëlle Futselaar ()这些天体的密度如此之大,引力如此之强,以至于它们的核心无论它们是什么都被事件视界永久地遮蔽在宇宙之外:完全黑暗的表面,光线无法从中逃脱。如果我们要了解中子星和黑洞之间临界点的物理学,就必须找到处于这一边界的天体。特别是,我们必须找到可以进行长时间精确测量的天体。而这正是我们所发现的一个既不明显是中子星也不明显是黑洞的天体。哈勃太空望远镜拍摄的球状星团 NGC 1851 的图像。图片来源:NASA、ESA 和 G. Piotto(帕多瓦大学);处理:Gladys Kober(NASA/美国天主教大学):Gladys Kober(美国国家航空航天局/美国天主教大学)当天文学家在星团NGC 1851的深处观察时,发现了一对特别的系统,这为我们了解宇宙中的极端物质提供了新的视角。这个系统由一颗毫秒脉冲星(一种快速旋转的中子星,它在旋转过程中会向整个宇宙发出无线电光束)和一个性质不明的巨大隐蔽物体组成。这个大质量天体是暗的,也就是说,从无线电到光学、X 射线和伽马射线波段,所有频率的光都看不到它。在其他情况下,这将使它无法被研究,但就在这里,毫秒脉冲星为我们提供了帮助。毫秒脉冲星类似于宇宙原子钟。它们的自旋非常稳定,可以通过探测它们产生的有规律的无线电脉冲进行精确测量。虽然脉冲星本质上是稳定的,但当脉冲星运动或其信号受到强引力场影响时,观测到的自旋会发生变化。通过观察这些变化,我们可以测量与脉冲星在轨道上运行的天体的特性。研究小组使用了位于南非卡鲁半沙漠的 MeerKAT 射电望远镜。图片来源:SARAO国际天文学家团队一直在使用南非的MeerKAT 射电望远镜对这个被称为 NGC 1851E 的星系进行观测。通过这些数据,我们可以精确地了解两个天体的轨道细节,显示出它们的最接近点会随着时间的推移而发生变化。爱因斯坦的相对论描述了这种变化,而变化的速度可以告诉我们系统中天体的总质量。观测结果表明,NGC 1851E 系统的重量几乎是太阳的四倍,暗伴星和脉冲星一样,是一个紧凑的天体比普通恒星的密度大得多。质量最大的中子星重约两个太阳质量,因此如果这是一个双中子星系统(众所周知并被研究过的系统),那么它就必须包含两颗迄今发现的最重的中子星。为了揭示伴星的性质,我们需要了解恒星系统中的质量是如何在恒星之间分配的。同样利用爱因斯坦的广义相对论,我们可以建立该系统的详细模型,发现伴星的质量介于太阳质量的 2.09 和 2.71 倍之间。这颗伴星的质量位于"黑洞质量鸿沟"之内。"黑洞质量鸿沟"介于最重的中子星和最轻的黑洞之间,前者被认为约为2.2个太阳质量,后者则是由恒星坍缩形成的,约为5个太阳质量。这一鸿沟中的天体的性质和形成是天体物理学中一个悬而未决的问题。那么,我们到底发现了什么呢?射电脉冲星 NGC 1851E 及其奇异伴星的潜在形成历史。资料来源:Thomas Tauris(奥尔堡大学 / MPIfR)一个诱人的可能性是,我们发现了一颗脉冲星,它正围绕着两颗中子星合并(碰撞)后的残骸运行。NGC 1851中恒星的密集排列使得这种不寻常的构造成为可能。在这个拥挤的恒星舞池中,恒星们将相互旋转,在无尽的华尔兹中交换舞伴。如果两颗中子星碰巧被抛得太近,它们的舞蹈就会以灾难性的方式结束。它们碰撞产生的黑洞可能比恒星坍缩产生的黑洞轻得多,因此黑洞可以在星团中自由游荡,直到找到华尔兹舞中的另一对舞者,然后毫不客气地插入其中在这一过程中将较轻的舞伴踢走。正是这种碰撞和交换机制,才有可能产生我们今天观察到的系统。对这个系统的研究还没有结束。我们的工作还在继续,以便最终确定伴星的真实性质,并揭示我们发现的是最轻的黑洞还是质量最大的中子星,或者两者都不是。在中子星和黑洞之间的边界,总是有可能存在一些新的、尚不为人知的天体物理天体。这一发现肯定会引起许多猜测,但已经明确的是,这一系统在了解宇宙中最极端环境下物质的真实情况方面有着巨大的前景。撰稿人:Ewan D. Barr - 马克斯-普朗克射电天文学研究所瞬态和脉冲星与 MeerKAT (TRAPUM) 合作项目科学家Arunima Dutta - 马克斯-普朗克射电天文学研究所射电天文学基础物理学研究部博士生本杰明-斯塔珀斯曼彻斯特大学天体物理学教授改编自最初发表在《对话》上的一篇文章。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

天文学家揭开宇宙最重黑洞双星之谜

天文学家揭开宇宙最重黑洞双星之谜 两个超大质量黑洞的合并是一个早已被预测到的现象,尽管从未被直接观测到过。天文学家提出的一个理论是,这些系统的质量如此之大,以至于它们耗尽了宿主星系中驱动合并所需的恒星物质。利用双子座北望远镜的档案数据,一个天文学家小组发现了一个双黑洞,为这一观点提供了有力的证据。据研究小组估计,这个双黑洞的质量是太阳质量的280亿倍,是迄今为止测量到的最重的双黑洞。这次测量不仅为双星系统的形成及其宿主星系的历史提供了宝贵的背景资料,而且还支持了一个由来已久的理论,即超大质量黑洞双星的质量在阻止超大质量黑洞合并方面起着关键作用。资料来源:NOIRLab/NSF/AURA/J. daSilva/M.Zamani几乎每个大质量星系的中心都有一个超大质量黑洞。当两个星系合并时,它们的黑洞会形成一对双星,这意味着它们处于相互束缚的轨道上。据推测,这些双星最终会合并,但这一现象从未被观测到过[1]。几十年来,天文学家们一直在讨论这样的事件是否可能发生。在最近发表于《天体物理学报》(TheAstrophysical Journal)的一篇论文中,一个天文学家小组提出了对这一问题的新见解。一个天文学家小组利用由美国国家科学基金会NOIRLab 负责运行的双子座北望远镜(国际双子座天文台的一半)提供的档案数据,测量出了迄今发现的最重的一对超大质量黑洞。两个超大质量黑洞的合并是一种早已被预测到的现象,但从未被观测到过。这对超大质量黑洞提供了一些线索,说明为什么宇宙中发生这种事件的可能性如此之小。双子座北区前所未有的洞察力研究小组利用夏威夷双子座北望远镜(由美国国家科学基金会资助的NOIRLab运行的国际双子座天文台的二分之一)的数据,分析了位于椭圆星系B2 0402+379内的一个超大质量黑洞双星。这是迄今为止唯一一个被分辨得足够详细,可以分别看到两个天体的超大质量黑洞双星,[2]而且它还保持着迄今为止直接测量到的最小间隔记录仅仅 24 光年[3]。虽然如此接近的分离预示着强大的合并,但进一步的研究发现,这对天体已经在这个距离上停滞了 30 多亿年,这不禁让人产生疑问:是什么阻碍了合并?双黑洞合并的挑战为了更好地了解这个系统的动态及其停止的合并,研究小组研究了双子座北区的双子座多目标摄谱仪(GMOS)的档案数据,这些数据使他们能够确定黑洞附近恒星的速度。"GMOS出色的灵敏度使我们能够测绘出恒星在靠近星系中心时的速度,"论文共同作者、斯坦福大学物理学教授罗杰-罗曼尼(Roger Romani)说。"有了这些,我们就能推断出居住在那里的黑洞的总质量。"据研究小组估计,这对双星的质量是太阳质量的280亿倍,是迄今测量到的最重的双黑洞。这一测量结果不仅为双星系统的形成及其宿主星系的历史提供了宝贵的背景资料,而且还支持了一个由来已久的理论,即超大质量双黑洞的质量在阻止潜在合并中起着关键作用[4]。"为国际双子座天文台提供服务的数据档案蕴藏着一座尚未开发的科学发现金矿,"国家科学基金会国际双子座天文台项目主任马丁-斯蒂尔说,"对这个极端超大质量双黑洞的质量测量是一个令人敬畏的例子,说明了探索这一丰富档案的新研究可能产生的影响。"二进制系统的形成与未来了解这个双星是如何形成的,有助于预测它是否以及何时会合并一些线索表明,这对双星是通过多个星系合并形成的。首先,B2 0402+379 是一个"化石星系团",这意味着它是整个星系团的恒星和气体合并成一个大质量星系的结果。此外,两个超大质量黑洞的存在,加上它们巨大的总质量,表明它们是由多个星系的多个较小黑洞合并而成的。星系合并后,超大质量黑洞不会正面相撞。相反,当它们进入一个有束缚的轨道时,就会开始互相弹射。它们每经过对方一次,能量就会从黑洞传递到周围的恒星。随着它们能量的流失,这对黑洞被越拖越近,直到相距仅有一光年时,引力辐射占据上风,它们才会合并。这一过程已经在成对恒星质量的黑洞中被直接观测到有史以来的第一次记录是在2015年通过引力波的探测但从未在超大质量的双星中观测到过。停滞不前的合并与未来联合的可能性通过对该星系巨大质量的新了解,研究小组得出结论,需要有数量特别多的恒星才能减缓双星轨道的速度,使它们如此接近。在这个过程中,黑洞似乎甩掉了它们附近几乎所有的物质,使得星系核心缺少恒星和气体。由于没有更多的物质来进一步减缓这对天体的轨道,它们的合并在最后阶段停滞了。罗曼尼说:"通常情况下,黑洞对较轻的星系似乎有足够的恒星和质量来驱动两者迅速结合在一起。由于这对黑洞非常重,因此需要大量恒星和气体来完成这项工作。但是这对黑洞已经将中央星系中的这些物质清除干净,使它停滞不前,可供我们研究。"这对天体究竟会克服停滞状态,最终以数百万年的时间尺度合并,还是永远继续在轨道上徘徊,目前尚无定论。如果它们真的合并,产生的引力波将比恒星质量的黑洞合并产生的引力波强大一亿倍。这对天体有可能通过另一次星系合并来征服最后的距离,这将为星系注入更多的物质,或者有可能是第三个黑洞,从而使这对天体的轨道慢到足以合并。不过,鉴于B2 0402+379是一个化石星系团,另一个星系合并的可能性不大。"我们期待着对B2 0402+379的内核进行后续调查,我们将研究其中存在多少气体,"论文第一作者、斯坦福大学本科生Tirth Surti说。"这应该能让我们更深入地了解超大质量黑洞最终能否合并,或者它们是否会作为双星搁浅。"说明虽然有证据表明超大质量黑洞之间的距离只有几光年,但似乎没有一个黑洞能够跨越这个最终距离。关于这种事件是否可能发生的问题被称为"最终-秒差距问题",几十年来一直是天文学家们讨论的话题。以前曾对含有两个超大质量黑洞的星系进行过观测,但在这些情况下,它们相距数千光年太远了,不可能像在 B2 0402+379 中发现的双星那样处于相互结合的轨道上。其他黑洞动力源的距离可能更小,不过这些都是通过间接观测推断出来的,因此最好归类为候选双星。这一理论最早是由贝格尔曼等人于 1980 年提出的,根据数十年来对星系中心的观测,这一理论一直被认为是存在的。编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人