韦伯和哈勃确认宇宙的膨胀率

韦伯和哈勃确认宇宙的膨胀率 天文学家结合哈勃和韦伯太空望远镜的数据,对哈勃常数进行了最新测量,确认了哈勃早先的测量是正确的。研究报告发表在《The Astrophysical Journal Letters》期刊上。哈勃常数被用于衡量宇宙膨胀的速率。早期的科学家曾认为宇宙是静止的,在爱因斯坦广义相对论出现之后,这一认识发生了变化。Alexander Friedman 在 1922 年发表的一组方程式显示宇宙可能在膨胀,Georges Lemaitre 通过独立推导得出了相同结论。哈勃 (Edwin Hubble) 于 1929 年通过观测数据证实宇宙在膨胀。爱因斯坦此前也是静态宇宙的支持者,他曾试图通过引入宇宙常数修正广义相对论,但哈勃结果发表之后他据称认为这是一生中最大的错误。来源 , 频道:@kejiqu 群组:@kejiquchat

相关推荐

封面图片

破解哈勃张力:韦伯的精确测量揭示了宇宙膨胀之谜

破解哈勃张力:韦伯的精确测量揭示了宇宙膨胀之谜 NGC 5468 是一个距离地球约 1.3 亿光年的星系,这张照片结合了哈勃和詹姆斯-韦伯太空望远镜的数据。这是哈勃发现的最远的仙王座变星星系。它们是测量宇宙膨胀率的重要里程标。根据仙王座变星计算出的距离与该星系中的一颗Ia型超新星相互关联。Ia 型超新星的亮度非常高,它们被用来测量远超过蛇夫座星系范围的宇宙距离,从而将宇宙膨胀率的测量扩展到更深的空间。资料来源:NASA, ESA, CSA, STScI, Adam G. Riess (JHU, STScI)宇宙膨胀的速度,即哈勃常数,是了解宇宙演化和最终命运的基本参数之一。然而,用各种独立的距离指标测得的哈勃常数值与根据宇宙大爆炸余辉预测的值之间存在着持续的差异,这种差异被称为"哈勃张力"(Hubble Tension)。NASA/ESA/CSA 詹姆斯-韦伯太空望远镜证实,哈勃太空望远镜敏锐的目光一直都是正确的,消除了人们对哈勃测量结果的疑虑。哈勃的历史成就建造NASA/ESA 哈勃太空望远镜的科学依据之一是利用其观测能力为宇宙膨胀率提供一个精确的数值。在哈勃望远镜于 1990 年发射之前,地面望远镜的观测结果存在巨大的不确定性。根据推导出的宇宙膨胀率数值,宇宙的年龄可能在 100 亿年到 200 亿年之间。在过去的 34 年中,哈勃已经将这一测量值的精确度缩减到了百分之一以下,将两者的年龄差值缩小到了 138 亿年。哈勃通过测量被称为"仙王座变星"的重要里程碑,完善了所谓的"宇宙距离阶梯",从而实现了这一目标。然而,哈勃值与其他测量结果并不一致,其他测量结果表明宇宙在大爆炸后膨胀得更快。这些观测数据是由欧空局普朗克卫星对宇宙微波背景辐射绘制的地图得出的,宇宙微波背景辐射是宇宙从大爆炸冷却下来后结构演变的蓝图。解决这个难题的简单办法是说,也许哈勃的观测结果是错误的,因为它对深空尺度的测量出现了误差。詹姆斯-韦伯太空望远镜的出现,让天文学家能够核对哈勃的观测结果。韦伯对仙王座的红外观测结果与哈勃的光学数据一致。韦伯证实了哈勃望远镜敏锐的目光一直都是正确的,消除了对哈勃测量结果的任何疑虑。这些并排图像的中心是一种特殊的恒星,它是测量宇宙膨胀速度的里程标仙王座变星。这两幅图像的像素非常高,因为它们是一个遥远星系的放大图。每个像素代表一颗或多颗恒星。詹姆斯-韦伯太空望远镜(James Webb Space Telescope)拍摄的图像在近红外波段要比哈勃望远镜(主要是可见光-紫外光望远镜)清晰得多。通过韦伯更清晰的视野来减少杂波,仙王座就能更清晰地显现出来,消除任何潜在的混淆。韦伯望远镜被用来观测一个仙王座样本,并证实了之前哈勃观测的准确性,而哈勃观测是精确测量宇宙膨胀速度和年龄的基础。图片来源:NASA、ESA、CSA、STScI、Adam G. Riess(JHU、STScI)宇宙奥秘与理论挑战最重要的一点是,与早期宇宙的膨胀相比,近邻宇宙中发生的事情之间所谓的哈勃张力(Hubble Tension)仍然是宇宙学家耿耿于怀的难题。空间结构中可能存在一些我们还不了解的东西。解决这一差异需要新的物理学吗?还是由于确定空间膨胀率的两种不同方法之间存在测量误差?哈勃和韦伯现在已经联手进行了明确的测量,进一步证明了是其他东西而不是测量误差在影响膨胀率。宇宙观测的进展巴尔的摩约翰-霍普金斯大学的物理学家亚当-里厄斯说:"在消除了测量误差之后,剩下的就是我们误解了宇宙这一真实而令人兴奋的可能性。亚当因与他人共同发现了宇宙膨胀正在加速这一事实而获得诺贝尔奖,这一现象现在被称为'暗能量'。"作为交叉检验,2023 年的首次韦伯观测证实,哈勃对膨胀宇宙的测量是准确的。然而,为了缓解"哈勃张力",一些科学家推测,随着我们对宇宙的深入观察,测量中看不见的误差可能会增加并变得明显。特别是,恒星拥挤可能会系统地影响对更遥远恒星亮度的测量。合作验证与未来方向亚当领导的 SH0ES(用于暗能量状态方程的超新星 H0)小组利用韦伯望远镜获得了更多的观测数据,这些天体是关键的宇宙里程碑标记,被称为仙王座变星,现在可以与哈勃数据进行关联。亚当说:"我们现在已经跨越了哈勃观测到的整个范围,我们可以非常有把握地排除测量误差是哈勃张力的原因。"团队在 2023 年进行的前几次韦伯观测成功表明,哈勃在牢固确立所谓宇宙距离阶梯第一级的保真度方面走在了正确的道路上。这幅插图展示了天文学家用来计算宇宙随时间膨胀速度的三个基本步骤,这个值被称为哈勃常数。所有这些步骤都涉及建立一个强大的"宇宙距离阶梯",首先测量附近星系的精确距离,然后再测量越来越远的星系。这个"阶梯"是一系列对不同种类天体的测量结果,研究人员可以利用这些天体的固有亮度来计算距离。对于较短的距离来说,最可靠的是仙王座变星,这些恒星以可预测的速率脉动,从而显示出它们的内在亮度。最近,天文学家利用哈勃太空望远镜观测了附近大麦哲伦云中的 70 个仙王座变星,对该星系进行了最精确的距离测量。天文学家将附近的仙王座变星的测量结果与更远星系的测量结果进行比较,这些星系还包括另一个宇宙尺度被称为Ia型超新星的爆炸恒星。这些超新星比仙王座变星亮得多。天文学家用它们作为"里程标",来测量从地球到遥远星系的距离。每一个标记都建立在"阶梯"的前一步之上。通过使用不同种类的可靠"里程标"来扩展"阶梯",天文学家可以测出宇宙中非常遥远的距离。天文学家将这些距离值与整个星系的光线测量值进行比较,由于空间的均匀膨胀,星系的光线会随着距离的增加而逐渐变红。这样,天文学家就可以计算出宇宙膨胀的速度:哈勃常数。图片来源:NASA、ESA 和 A:NASA, ESA and A. Feild (STScI)宇宙距离阶梯的复杂性天文学家使用各种方法来测量宇宙中的相对距离,具体取决于所观测的天体。这些技术统称为宇宙距离阶梯每一级阶梯或测量技术都依赖于前一级阶梯的校准。但一些天文学家认为,沿着"第二梯级"向外移动,如果仙王座的测量结果随着距离的增加而变得不那么精确,那么宇宙距离的阶梯可能会变得不稳固。出现这种不准确的情况可能是因为仙王座的光线可能会与邻近恒星的光线混合在一起随着距离的增加,这种效应可能会变得更加明显,因为天空中的恒星会挤在一起,彼此变得更加难以区分。观测方面的挑战在于,过去哈勃拍摄的这些更遥远的仙王座变星的图像,在我们和它们的宿主星系之间的距离越来越远时,看起来与邻近的恒星更加拥挤和重叠,因此需要仔细考虑这种效应。中间的尘埃使可见光测量的确定性变得更加复杂。韦伯望远镜能穿过尘埃,自然地将倒灶系恒星与邻近恒星隔离开来,因为它在红外波段的视力比哈勃望远镜更敏锐。"韦伯望远镜和哈勃望远镜的结合为我们提供了两全其美的解决方案。我们发现,当我们沿着宇宙距离阶梯爬得更远时,哈勃的测量结果仍然是可靠的,"亚当说。新的韦伯观测结果包括八个 Ia 型超新星的五个宿主星系,共包含 1000 个蛇夫座天体,并延伸到蛇夫座天体测量结果最远的星系距离 1.3 亿光年的 NGC 5468。"这横跨了我们用哈勃测量的全部范围。因此,我们已经走到了宇宙距离阶梯第二级的尽头,"合著者、巴尔的摩太空望远镜科学研究所的加甘迪普-阿南德(Gagandeep Anand)说,该研究所为美国国家航空航天局(NASA)运营韦伯望远镜和哈勃望远镜。哈勃和韦伯对"哈勃张力"的确认,... PC版: 手机版:

封面图片

罗曼望远镜的强大能力将带来测量宇宙膨胀率的新维度

罗曼望远镜的强大能力将带来测量宇宙膨胀率的新维度 这幅哈勃太空望远镜拍摄的图像显示,一个星系嵌入一个巨大的星系团中,其强大的引力产生了其背后遥远的一颗超新星的多幅图像。图像显示了该星系在一个名为 MACS J1149.6+2223 的大型星系团中的位置,距离超过 50 亿光年。在该星系的放大插图中,箭头指向爆炸恒星的多幅图像,该恒星被命名为雷夫斯达尔超新星,距离地球 93 亿光年。资料来源:NASA、ESA、Steve A. Rodney(JHU)、Tommaso Treu(UCLA)、Patrick Kelly(UC Berkeley)、Jennifer Lotz(STScI)、Marc Postman(STScI)、Zolt G. Levay(STScI)、FrontierSN 小组、GLASS 小组、HFF 小组(STScI)、CLASH 小组。其中一个团队特别注重训练罗曼寻找引力透镜超新星,这种天体可以用于测量宇宙膨胀率的独特方法。他们说,罗曼对这些难以捉摸的透镜超新星的研究对宇宙学的未来有着巨大的潜力。美国国家航空航天局(NASA)的南希-格蕾丝-罗曼太空望远镜是为了纪念 NASA 的第一位首席天文学家而命名的,它代表着我们在探索了解宇宙的道路上的一次飞跃。这个尖端天文台计划于 2027 年 5 月发射,旨在探索暗能量的奥秘、研究系外行星,并以前所未有的清晰度揭示宇宙的膨胀速度。罗曼太空望远镜利用先进的技术对宇宙进行大范围、细致的观测,将为我们提供对宇宙的重要见解,增强我们对宇宙组成、结构和演化的了解。资料来源:美国国家航空航天局戈达德太空飞行中心天文学家正在研究宇宙中最紧迫的谜团之一宇宙膨胀的速度他们正准备利用美国国家航空航天局的南希-格蕾丝-罗曼太空望远镜(Nancy Grace Roman Space Telescope),以一种新的方式研究这个谜团。一旦罗曼望远镜于 2027 年 5 月发射升空,天文学家们将在罗曼望远镜的大范围图像中寻找引力透镜状超新星,这些超新星可以用来测量宇宙的膨胀速度。天文学家有多种独立的方法来测量宇宙目前的膨胀率,即哈勃常数。不同的技术得出不同的值,称为哈勃张力。罗曼的大部分宇宙学研究都将针对难以捉摸的暗能量,因为暗能量会影响宇宙随时间的膨胀。这些研究的一个主要工具是一种相当传统的方法,它将 Ia 型超新星等天体的固有亮度与其感知亮度进行比较,从而确定距离。另外,天文学家也可以使用罗曼法来研究重力透镜超新星。这种探索哈勃常数的方法与传统方法不同,因为它基于几何方法,而不是亮度。这幅插图利用哈勃太空望远镜拍摄的雷夫斯达尔超新星图像,展示了大质量星系团MACS J1149.6+2223的引力是如何弯曲并聚焦来自其背后的超新星的光线,从而产生爆炸恒星的多幅图像的。这种现象被称为引力透镜。引力透镜超新星为天文学家提供了一种计算哈勃常数宇宙加速的速率的独特方法。一个研究小组正准备利用美国宇航局即将于 2027 年 5 月发射的南希-格蕾丝-罗曼太空望远镜,让天文学家发现并研究这些罕见的天体。上图显示,当恒星爆炸时,它的光线穿过太空,遇到前景星系团。如果没有星系团,天文学家将只能探测到直射地球的超新星光线,并且只能看到超新星的单一图像。然而,在超新星多重成像的情况下,光路会被星系团的引力弯曲,并重新定向到新的光路上,其中有几条光路是指向地球的。因此,天文学家可以看到爆炸恒星的多幅图像,每幅图像都对应着其中一条改变的光路。每幅图像穿过星团的路线不同,到达地球的时间也不同,部分原因是光线到达地球的路径长度不同。精确测量多幅图像之间到达时间的差异,就可以得出一个距离组合,从而限制哈勃常数。在下图中,重定向光线穿过星团中的一个巨大椭圆星系。这个星系又增加了一层透镜作用,再一次改变了原本会错过我们的几条光路的方向,并将它们聚焦,使它们能够到达地球。资料来源:NASA、ESA、Ann Feild(STSCI)、Joseph DePasquale(STSCI)、NASA、ESA、Steve A. Rodney(JHU)、Tommaso Treu(UCLA)、Patrick Kelly(UC Berkeley)、Jennifer Lotz(STSCI)、Marc Postman(STSCI)、Zolt G. Levay(STSCI)、FrontierSN 小组、GLASS 小组、HFF 小组(STSCI)、CLASH 小组。引力透镜的前景位于巴尔的摩的空间望远镜科学研究所(STScI)的卢·斯特罗格是准备对罗曼望远镜进行研究的团队的共同负责人,他说:"罗曼是让引力透镜超新星研究起飞的理想工具。这些天体非常罕见,而且很难发现。我们不得不靠运气才能及早发现其中的几个。罗曼的大视野和高分辨率重复成像将有助于提高这些机会"。天文学家利用各种天文台,如美国宇航局的哈勃太空望远镜和詹姆斯-韦伯太空望远镜,在宇宙中发现了八颗引力透镜状超新星。然而,由于超新星的类型及其延时成像的持续时间,这八个超新星中只有两个是测量哈勃常数的可行候选者。当来自恒星爆炸等天体的光线在飞往地球的途中穿过星系或星系团,并被巨大的引力场偏转时,就会发生引力透镜现象。光线沿着不同的路径分裂,在天空中形成我们看到的超新星的多个图像。根据不同路径之间的差异,超新星图像会出现几小时到几个月,甚至几年的延迟。精确测量多幅图像之间到达时间的差异,就能得出距离组合,从而限制哈勃常数。罗曼望远镜的广泛勘测将能够以比哈勃更快的速度绘制宇宙地图,它在单幅图像中"看到"的面积是哈勃的 100 多倍。特别是,高纬度时域巡天将重复观测同一天空区域,这将使天文学家能够研究随时间变化的目标。这意味着将有大量的数据每次超过 50 亿像素需要进行筛选,以发现这些非常罕见的事件。斯特罗格是该计划的共同负责人,他是 STScI 的贾斯汀-皮埃尔(Justin Pierel)。他解释说:"这台新望远镜将使我们能够在一张快照中看到整个森林,而不是收集几张树木的照片。"由斯特罗格和皮埃尔领导的 STScI 小组正在通过美国宇航局太空和地球科学研究机会(ROSES)南希-格蕾丝-罗曼太空望远镜研究和支持参与机会计划资助的一个项目,为在罗曼数据中发现引力透镜超新星奠定基础。皮埃尔说:"由于这些超新星非常罕见,要充分利用引力透镜超新星的潜力,就必须做好充分准备。我们希望提前准备好寻找这些超新星的所有工具,这样当数据到来时,我们就不用浪费任何时间来筛选数以兆字节计的数据了"。该项目将由美国国家航空航天局(NASA)各中心和全国各大学的研究人员组成的团队实施。准备工作将分几个阶段进行。研究小组将创建数据还原管道,用于在罗曼成像中自动检测引力透镜超新星。为了训练这些管道,研究人员还将创建模拟成像:需要 50000 个模拟透镜,而目前已知的实际透镜只有 10000 个。斯特罗格和皮埃尔团队创建的数据缩减管道将补充正在创建的管道,以便利用 Ia 型超新星研究暗能量。"罗曼望远镜确实是创建黄金标准引力透镜超新星样本的第一次机会,"斯特罗格总结道。"我们现在的所有准备工作都将产生所需的所有成分,以确保我们能够有效地利用宇宙学的巨大潜力"。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

物理学家提出广义相对论的修正方案 解释引力在宇宙尺度上稍稍减弱的奇特现象

物理学家提出广义相对论的修正方案 解释引力在宇宙尺度上稍稍减弱的奇特现象 在过去的 100 年里,物理学家一直依靠阿尔伯特-爱因斯坦的"广义相对论"来解释引力如何在整个宇宙中起作用。广义相对论被无数次试验和观测证明是准确的,它表明引力不仅影响三个物理维度,还影响第四个维度:时间。该项目的第一作者、滑铁卢数学物理系应届毕业生罗宾-温(Robin Wen)说:"这个引力模型对于从宇宙大爆炸理论到拍摄黑洞的所有工作都至关重要。""但是,当我们试图理解宇宙尺度上的万有引力时,在星系团甚至更远的尺度上,我们遇到了与广义相对论预言明显不一致的地方。就好像引力本身不再完全符合爱因斯坦的理论一样。我们把这种不一致称为'宇宙故障':当距离达到数十亿光年时,引力会变弱约百分之一。"二十多年来,物理学家和天文学家一直在努力创建一个数学模型,以解释广义相对论明显不一致的地方。滑铁卢大学在应用数学家和天体物理学家的跨学科合作下,开展了长期的尖端引力研究。滑铁卢大学天体物理学教授、外围研究所研究员尼耶什-阿夫肖迪(Niayesh Afshordi)说:"近一个世纪前,天文学家发现我们的宇宙正在膨胀。星系距离越远,移动速度越快,以至于它们似乎以接近光速的速度移动,而这正是爱因斯坦理论所允许的最大速度。我们的发现表明,在这些尺度上,爱因斯坦的理论可能也是不够的。"研究小组的"宇宙故障"新模型修改并扩展了爱因斯坦的数学公式,在不影响广义相对论现有成功应用的情况下,解决了一些宇宙学测量不一致的问题。"把它想象成爱因斯坦理论的脚注,"温说。"一旦达到宇宙尺度,就会出现条件。这个新模型可能只是我们开始跨越时空解开宇宙谜题的第一条线索。温这项题为"引力中的宇宙故障"的研究发表在《宇宙学与天体粒子物理学杂志》上。DOI: 10.1088/1475-7516/2024/03/045编译来源:ScitechDaily ... PC版: 手机版:

封面图片

NASA实时揭秘:看看韦伯和哈勃现在正在观测什么

NASA实时揭秘:看看韦伯和哈勃现在正在观测什么 美国国家航空航天局(NASA)的"太空望远镜直播"(Space Telescope Live)提供有关哈勃和詹姆斯-韦伯太空望远镜观测的实时更新和全面详情,增强公众对天文研究的参与和了解。来源:美国国家航空航天局NASA 的 Space Telescope Live 由马里兰州巴尔的摩的太空望远镜科学研究所设计和开发,它提供了当前和即将进行的观测细节的内部访问:不仅包括每台望远镜正在观测的内容,还包括目标在天空中的位置、数据收集的方式以及研究人员希望回答的问题。识别、定位和放大显示最新目标的地图。回转到下一个目标,再回到上一个目标。监控时间表。查看科学仪器。查看昨天的观测情况,研究计划书,还可以查看哈勃和韦伯过去观测的全部目录。詹姆斯-韦伯太空望远镜艺术家概念图。资料来源:美国国家航空航天局要知道美国宇航局的哈勃和詹姆斯-韦伯太空望远镜过去观测到了什么并不难。美国国家航空航天局(NASA)多产的天文观测台所捕捉到的图像、光谱和其他数据,几乎每周都会带来宇宙大发现的消息。但哈勃和韦伯此时此刻在看什么呢?孕育着新生恒星的朦胧星柱?一对相撞的星系?一颗遥远行星的大气层?在130亿年的太空之旅中被拉伸和扭曲的银河系光线?美国国家航空航天局(NASA)的"太空望远镜直播"(Space Telescope Live)是一个最初于2016年开发的网络应用程序,用于提供哈勃目标的实时更新,现在可以方便地访问哈勃和韦伯当前、过去和即将进行的观测的最新信息。这一探索性工具由巴尔的摩的太空望远镜科学研究所为美国国家航空航天局设计和开发,为公众提供了一种直观、吸引人的方式,让他们更多了解天文调查是如何进行的。哈勃太空望远镜在轨插图。来源:美国国家航空航天局通过重新设计的用户界面和扩展的功能,用户不仅可以了解每台望远镜目前正在观测的行星、恒星、星云、星系或深空区域,还可以了解这些目标在天空中的确切位置;正在使用哪些科学仪器来捕捉图像、光谱和其他数据;观测的确切时间和持续时间;观测的状态;谁在领导这项研究;以及最重要的是,科学家们正在试图发现什么。经批准的科学计划的观测信息可通过空间望远镜米库尔斯基档案馆(Mikulski Archive for Space Telescopes)获取。美国国家航空航天局的太空望远镜实时系统(Space Telescope Live)提供了获取这些信息的便捷途径不仅包括当天的目标,还包括过去观测的整个目录韦伯望远镜的记录可以追溯到 2022 年 1 月的首个调试目标,而哈勃望远镜的记录则可以追溯到 1990 年 5 月开始运行时。以目标位置为中心的可缩放天空图是利用Aladin 天空图集绘制的,并配有地面望远镜的图像,为观测提供背景信息。(由于哈勃望远镜和韦伯望远镜的数据在向公众和天文学界发布之前必须经过初步处理,在许多情况下还必须经过初步分析,因此本工具中没有这两台望远镜的实时图像)。目标名称和坐标、计划开始和结束时间以及研究课题等详细信息直接来自观测调度和建议规划数据库。该工具内的链接可引导用户访问原始研究计划,作为获取更多技术信息的入口。美国国家航空航天局最新版本的"太空望远镜直播"与上一版本相比发生了重大转变,但该团队已在收集用户反馈,并计划推出更多增强功能,以提供更深入的探索和了解机会。NASA 的"太空望远镜直播"可在台式机和移动设备上运行,并可通过 NASA 的哈勃和韦伯官方网站访问。编译自:ScitechDaily ... PC版: 手机版:

封面图片

引力是学生学物理时最先接触的内容。经典引力发展到广义相对论达到了顶峰,但引力和量子物理学的结合(量子引力)至今未完成。宇宙演化是

引力是学生学物理时最先接触的内容。经典引力发展到广义相对论达到了顶峰,但引力和量子物理学的结合(量子引力)至今未完成。宇宙演化是各方人士关注的问题,它和引力间的关系至为密切,两个面向的物理问题交织在一起。引力的秘密和宇宙的演化仍存在著一些深刻的悬念。本书以通俗语言为读者解释内容,并试图深入讲解,使人们了解为什么物理认识是如此发展过来的。作者致力于告诉读者,科学家特别是大师门是如何思考的,因此本书特别具有启发性。 本书是作者在《可畏的对称》成为畅销书之后的另一部科普著作,原名《原人的玩具》,1989年第一版,2000年由作者加跋修订,牛津大学出版社出版第二版。他从重力开始,从牛顿讲到爱因斯坦,从「老人的玩具」引入作为广义相对论基础的等价原理以及时空弯曲;再由引力进入膨胀的宇宙、物质的产生以及暗物质的存在;然后再次回到重力,讲述重力和量子理论结合的问题,涉及超弦以及膜理论;最后归结到自然的可认识问题。

封面图片

用11吨重的“时光机”揭开暗能量和宇宙膨胀的神秘面纱

用11吨重的“时光机”揭开暗能量和宇宙膨胀的神秘面纱 DESI绘制了迄今为止最大的宇宙三维地图。地球位于这张完整地图的薄片中心。在放大的部分,很容易看到我们宇宙中物质的底层结构。图片来源:Claire Lamman/DESI合作;cmastro定制的彩色地图软件包我们现在拥有了有史以来最大的宇宙三维地图,这要归功于安装在亚利桑那州一架望远镜顶端的一台功能强大的仪器,它拥有一个由5000只光纤"眼睛"组成的机器人阵列,可以观察夜空。在过去的五年里,暗能量光谱仪在科学界被称为DESI测量了3000多万个星系和300万颗类星体的光谱,以确定宇宙在110亿年里的膨胀速度。DESI的宣布是一项正在进行的国际合作的成果,该合作由来自70多个机构的900多名研究人员组成,其中包括在该项目中发挥领导作用的加州大学圣克鲁兹分校的天文学家。然而,尽管这个消息很重大,但他们说这仅仅是个开始。暗能量光谱仪(DESI)安装在基特峰国家天文台的美国国家科学基金会尼古拉斯-U-梅耶尔 4 米望远镜上。资料来源:KPNO/NOIRLab/NSF/AURA/P.Marenfeld开拓性发现和未来愿景加州大学圣克鲁兹分校天文学和天体物理学系副教授阿列克西-莱奥豪德(Alexie Leauthaud)说:"如果第一年数据集中暗示的趋势在第三年的分析中得到证实,这将是一个重大发现。作为 DESI 合作的一部分,这将是一个非常激动人心的时刻。"从七月份开始,Leauthaud 将担任这项工作的发言人其中包括牵头组织者的职责因此她完全有能力提供最新信息。加州大学圣克鲁斯分校的其他合作教授包括天文学与天体物理学教授康妮-罗科西(Connie Rockosi)和 J. 泽维尔-普罗查斯卡(J. Xavier Prochaska)。洛科西领导了基特峰国家天文台 4 米梅耶尔望远镜的仪器调试工作,她现在的角色是仪器科学家,帮助仪器保持最佳运行状态。此外,加州大学圣克鲁兹分校的本科生、研究生和博士后组成的"杰出团队"也功不可没,他们一直积极参与该项目,定期前往亚利桑那州的望远镜帮助观测。揭开暗能量的神秘面纱正如DESI所在的劳伦斯伯克利国家实验室在一份公告中解释的那样:"了解我们的宇宙是如何进化的,这与它的终结方式息息相关,也与物理学中最大的谜团之一有关:暗能量,一种导致我们的宇宙膨胀得越来越快的未知成分"。这是科学家们第一次以优于 1%的精度测量年轻宇宙的膨胀历史让我们对宇宙是如何演化的有了最好的认识。研究人员在多篇论文中分享了他们对第一年所收集数据的分析,这些论文将于今天发布在 arXiv 上,研究人员还在美国物理学会会议和意大利莫里昂德会议上发表了演讲。在这段360度视频中,您可以利用DESI的坐标数据,在数百万个星系中进行互动式飞行。资料来源:菲斯克天文馆、中大博尔德分校和 DESI 合作项目斯文-海登里奇(Sven Heydenreich)是加州大学圣克鲁兹分校的一名博士后研究学者,他在DESI身兼数职:担任早期职业科学家委员会委员,利用仪器进行星系间测量,并共同领导一个工作组,预测DESI任务可能延续的不同方案。"我们的目标是测量DESI星系如何弯曲和扭曲来自其背后更遥远星系的光线,这种效应被称为引力透镜效应,"海登里希说,他于2023年底在基特峰现场工作了一周。"这些测量结果对于分析星系如何受到其周围暗物质分布的影响至关重要。此外,这些结果还将有助于提高我们对描述我们当前宇宙组成和演化模型的参数的理解"。11 吨重的"时光机"DESI的组件设计用于自动对准预先选定的一组星系,收集它们的光线,然后将这些光线分割成狭窄的色带,以精确绘制它们与地球的距离图,并测量这些光线到达地球时宇宙膨胀了多少。在理想条件下,DESI 每 20 分钟就可以循环观测一组新的 5000 个星系。在过去的五年里,DESI反复测绘了天空三分之一区域内数以百万计的星系和类星体的距离,让我们对暗能量和宇宙的历史有了更多的了解。我们目前的理解是,引力减缓了早期宇宙的膨胀速度,但暗能量却加速了宇宙的膨胀。DESI对全部110亿年膨胀历史的总体精度为0.5%,最遥远的纪元涵盖过去的80-110亿年精度达到创纪录的0.82%。对我们年轻的宇宙进行这样的测量是非常困难的。然而,在一年之内,DESI测量早期宇宙膨胀历史的能力已经是其前身(斯隆数字巡天的BOSS/eBOSS)的两倍。通过观察DESI的地图,我们不难发现宇宙的基本结构:星系簇拥在一起,被天体较少的空洞隔开。在DESI的视野之外,我们的早期宇宙则完全不同:那是一锅由亚原子粒子组成的炙热而浓稠的汤,它们的运动速度太快,以至于无法形成像我们今天所知的原子那样的稳定物质。这些粒子中包括氢核和氦核,统称为重子。这种早期电离等离子体中的微小波动引起了压力波,使重子移动成波纹状,就像你把一把碎石扔进池塘里所看到的一样。随着宇宙的膨胀和冷却,中性原子形成了,压力波停止了,将涟漪凝固在三维空间中,并使未来的星系越来越多地聚集在高密度区域。数十亿年后,我们仍然可以在星系分离的特征中看到这种微弱的三维涟漪或气泡图案这种特征被称为重子声振荡(BAOs)。这段动画展示了重子声波振荡如何充当测量宇宙膨胀的宇宙尺。资料来源:克莱尔-拉曼/DESI 合作和珍妮-努斯/伯克利实验室研究人员利用 BAO 测量结果作为宇宙标尺。通过测量这些气泡的表观大小,他们可以确定天空中这种极其微弱图案的物质的距离。通过对 BAO 气泡远近的测绘,研究人员可以将数据切成小块,测量宇宙在过去每个时间段的膨胀速度,并模拟暗能量对膨胀的影响。俄亥俄大学教授、DESI BAO 分析联合负责人徐熙钟(音译)说:"我们测量了这一巨大宇宙时间范围内的膨胀历史,其精确度超过了之前所有 BAO 勘测的总和。我们很高兴了解这些新的测量结果将如何改善和改变我们对宇宙的认识。人类对我们的宇宙有着永恒的迷恋,既想知道它是由什么构成的,又想知道它将会发生什么"。编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人