国产光刻机工厂落地雄安?中国电子院澄清:这是北京高能同步辐射光源

国产光刻机工厂落地雄安?中国电子院澄清:这是北京高能同步辐射光源 近期,一则消息在各大视频平台广为传播,称清华大学EUV项目把ASML的光刻机巨大化,实现了光刻机国产化,并表示这个项目已经在雄安新区落地。对此,中国电子工程设计院有限公司发声,称该项目并非网传的国产 #光刻机 工厂,而是北京高能同步辐射光源项目(HEPS)

相关推荐

封面图片

高能同步辐射光源储存环全环贯通

高能同步辐射光源储存环全环贯通 HEPS储存环束流轨道周长约1360.4米,用于储存高能高品质电子束,同时产生同步辐射光,是世界上第三大、国内第一大光源加速器,也是我国第一台高能量同步辐射光源、第一台第四代同步辐射装置。它采用48周期的七弯铁消色散磁聚焦结构方案,6GeV能量下的束流水平自然发射度优于60pm·rad。HEPS由国家发展改革委批复立项,中国科学院高能物理研究所承担建设,2019年6月开建,建设周期6.5年。建成后,它将成为世界上亮度最高的第四代同步辐射光源之一,将面向航空航天、能源环境、生命医药等领域用户开放。2023年12月11日,HEPS主体设备安装闭环,储存环真空、注入引出、高频、低温、插入件、电源、束控、前端区等系统随即开启安装和调试。去年,HEPS直线加速器、增强器已满能量出束,通过工程指挥部验收。现在,储存环隧道完成了全环真空闭环,启动全环联调,将开启储存环束流调试新阶段。最后一个周期真空连接储存环隧道安装现场储存环隧道安装现场储存环全环贯通活动合影 ... PC版: 手机版:

封面图片

中国光刻机“”弯道超车”

中国光刻机“”弯道超车” 真正的SSMB-EUV光源方案 加速器周长100~150米,输出EUV功率>1KW 美国的极限制裁极大的加速了中国EUV光刻机的研发速度。 中国目前采取的是一种全新的“技术路线方案” 目前中国有三条光刻机研发路线。 1.国外正统路线,也就是ASML的EUV光刻机路线。HW+上海光机所+宇量升,国家队,走500W LPP光源+复杂镜头组的技术路线。现在进度最快,技术复杂度相对最高,特别是超高功率、超高重复频率二氧化碳激光器技术难度非常高。进度保密 2.改进型路线。广东智能机器研究院(广智院)+华中科技大,他们在尝试一种采用分时高功率光纤激光器射击液态锡靶的方式绕开超高功率、超高重复频率二氧化碳激光器的技术路线。如果他们那个400路光纤激光器能够成功,将是使用二氧化碳激光器的LPP光源功率的数倍。何时成功还是未知。 3.颠覆式全新路线。清华大学主导的1千瓦级SSMB-EUV光源,直接把光刻机光源变成基础设施同步辐射光源。直接把光源变成类似工业园中的电力、蒸汽、纯水等可购买原料。比如:深圳产业光源系统规划了EUV光刻线站和EUV检测线站等合计四条光束线,六个实验站。 第三条。颠覆性技术路线如果全面成功,可以秒杀上面两条路线。光源外置、极大简化的光路直接把EUV光刻机变成体积大,但是成本相对较低的批量产品。且更匹配中国极高的基础设施建设能力!!!

封面图片

DUV光刻机和EUV光刻机的主要区别是激光光源。DUV光源波长为193纳米,分辨率差,而EUV光源波长为13.5纳米。圣地亚哥C

DUV光刻机和EUV光刻机的主要区别是激光光源。DUV光源波长为193纳米,分辨率差,而EUV光源波长为13.5纳米。圣地亚哥Cymer公司(在4SRanch边上)是生产EUV光源的唯一厂家,于2013年被阿斯麦用37亿美元收购成为其子公司。为EUV光刻机供货的500个厂商分属24个国家,都被拜登拉进去共同打压中国芯片产业。中国官媒声称美国越制裁越促进中国发展,有当年慈禧太后向所有列强宣战的勇气,

封面图片

俄罗斯首台光刻机 真的制造成功了?

俄罗斯首台光刻机 真的制造成功了? 当时,IPF RAS计划在六年内打造出俄罗斯自产7nm光刻机的工业样机,2024 年将创建一台“Alpha机器”,2026创建"测试机",2026年~2028年俄罗斯本土光刻机将获得更强大的辐射源,改进的定位和进给系统,并将开始全面的工作,2028年,这些设备全面运行。时隔两年,俄罗斯所说的真的实现了首台光刻机正式制造成功并进入测试。有实际意义的突破据塔斯社报道,俄罗斯第一台能够生产最大350nm(行业一般说0.35μm)尺寸芯片的光刻机已经创建并正在测试中。俄罗斯联邦工业和贸易部副部长瓦西里·什帕克(Vasily Shpak)在CIPR期间向塔斯社报告了这一点。他表示,“我们组装并制造了第一台国产光刻机。作为泽廖诺格勒技术生产线的一部分,目前正在对其进行测试。”俄罗斯接下来的目标是在2026年制造可以支持130nm工艺的光刻机。去年10月有报道称,第一台俄罗斯国产130nm光刻机原型可能在2026年之前问世。再下一步,将是开发90nm光刻机。他说:"我们将继续逐步向90nm及以下迈进。因此,俄罗斯不会止步于此,同时已经在实施一项全面的电子工程项目。尽管350nm的芯片虽然被认为是大尺寸芯片,但仍具备一定实际的意义,可用于许多行业,包括汽车行业、能源和电信行业。欧盟此前在俄罗斯武器上发现大量民用芯片,包括洗衣机,洗碗机等家电用具,这也是无奈之举。而接下来,或许俄罗斯可以进而实现“洗衣机芯片”自由。网友也给出了俄罗斯未来的路线:优化一下,就能180nm,看产出,每小时出几片,套准精度3-sigma 多少纳米。加上double pattern,其他指标ok,就能90nm,65nm也有机会了。光源改进一下,i-line换ArF 193纳米,不就进28nm了吗?不过,目前还不太清楚俄罗斯所说的350nm(0.35μm)光刻机是哪种类型光刻机,此前俄媒曾提到过基于同步加速器和/或等离子体源”的无掩模X射线光刻机,而从目前来看350nm(0.35μm)的波段达到i线(365nm)。各个工艺节点和光刻技术的关,图源丨中泰证券350nm芯片,什么水平历史上,350nm(0.35μm)诞生于1995年,现在依然拥有产品应用,主要是一些不太刚需制程的特色工艺产品,比如模拟芯片、功率半导体、传感器或者低端MCU、军工产品。除此之外,其应用可能还包括各类FPV和“自杀小摩托”这些属于一次性用品,使用时间比较短。作为对比,半导体制程工艺发展史简单总结如下:1971年,10μm工艺是当时最高工艺,代表芯片是Intel 1103 DRAM、4004 CPU(1971)、8008 CPU(1972);1974年,步入6μm工艺,大名鼎鼎的Intel 8080便采用这一制程;1977年,3μm工艺开启元年,从此x86处理器Intel 8086(含8085、8088)正式诞生;1982年 1.5μm工艺用在Intel 80286上,1985年 1μm工艺用在Intel 80386上,1989年,0.8μm工艺用在Intel 80486上;1995年,0.35μm(也就是350nm)工艺开启元年,Pentium P54CS、IBM P2SC(1996)、IBM POWER3(1998)都采用了这一工艺;1997年,主节点为0.25μm工艺,开始引入国际半导体技术路线图(ITRS)主节点和半节点定义,即:1998年半节点220nm工艺,1999年主节点0.18μm工艺(180nm),2000年半节点150nm工艺;2001年,130nm是当时的主节点,典型芯片是130nm的奔腾3处理器,2002年半节点为110nm工艺;2004年,步入90nm元年,英特尔、英飞凌、德州仪器、IBM、联电和台积电基本都能达到90nm,典型芯片包括90nm的奔腾4处理器;2012年,制程步入22nm阶段,此时英特尔,联电,联发科,格芯,台积电,三星等厂商都具备生产能力;2015年联电止步于14nm,2017年英特尔卡在了10nm,2018年格芯放弃7nm,此时先进制程的战场只剩下台积电和三星;2019年6nm量产导入,2020工艺5nm开始量产,而国内也开始量产14nm芯片;2024年,随着英特尔开始重新重视制程技术,英特尔、台积电、三星正在争夺2nm的先发地位。当然,毕竟350nm(0.35μm)芯片性能较差,面对现代比较复杂的应用需求,使用过程中芯片热量会急剧增加,从而继续带来更大的性能损耗,因此在数字芯片中更多可能是将就用,比较追求性能的消费产品可能更是无法使用。难点还有很多当然,芯片制造也不是说有了光刻机就行了。《光刻技术六十年》中写道,在芯片制造的全流程中,整个过程涉及几十道光刻工艺,每一道光刻工艺之后紧接着是众多复杂的半导体IC平面加工工艺。这些工艺中的每一道又细分成多道工序,而每一道工序又由多个步骤组成,每一步骤都至关重要,不容有失。这有多难?就比如,看似最简单的基片表面处理和清洗步骤,也需要重复多次,其中一步出了问题,整个IC制造过程就全部报废。因此,每一步骤出问题的可能性被严格控制在0.000001%以下。由于每一步骤都是在前一步的基础上进行的,最终成品率是每一步成功率的乘积。若整个流程包含超过两千个步骤,即使每一步都能达到99%的成功率,最终生产出来的成品率也只有0。因此在芯片制造技术中,好的设备很关键,尤其是需要高精度的光刻机,但有了好的工艺设备后,人才是最关键的。在芯片制造技术中,最难的在于如何建立一个能够齐心协力的团队,这需要整个公司上上下下所有人都是最敬业的。世界上没有任何一个人为制造出来的东西,可以像芯片这样要求百分之百精准度。3月,Tomshardware就曾报道,受欧美制裁影响,俄罗斯本土最大芯片设计厂商贝加尔电子芯片制造只能更多的交由国内厂商,当地的芯片封装合作厂商的生产良率仅有50%。注意,这里并非生产良率,而是封装良率。如果晶圆制造厂、Foundry厂和封测厂三个站点的良率均为99%,则:总良率=99% X99% X 99%= 97%。所以,50%的封装良率切实影响着俄罗斯的芯片生产,因此,俄罗斯要突破的还有很多。最后还是要说,不要轻易取笑,毕竟有志者事竟成。而从从技术角度来看,俄罗斯也是在重新发明轮子。付斌丨作者 ... PC版: 手机版:

封面图片

替代EUV光刻的新方案公布

替代EUV光刻的新方案公布 但一种非常规替代方案正在酝酿之中。日本筑波高能加速器研究组织(KEK)的一组研究人员认为,如果利用粒子加速器的能量,EUV 光刻技术可能会更便宜、更快速、更高效。甚至在晶圆厂安装首批 EUV 机器之前,研究人员就看到了使用粒子加速器产生的强大光源( 自由电子激光 (FEL:free-electron laser))进行 EUV 光刻的可能性。然而,KEK 的科学家表示,并不是任何粒子加速器都可以做到这一点。他们声称,EUV 光刻的最佳候选方案是采用粒子加速器版本的再生制动(原文:They claim the best candidate for EUV lithography incorporates the particle-accelerator version of regenerative braking)。它被称为能量回收线性加速器(energy recovery linear accelerator),可以使自由电子激光经济地产生数十千瓦的 EUV 功率。这足以同时驱动不止一台而是多台下一代光刻机,从而降低先进芯片制造的成本。KEK 先进光源研究员 Norio Nakamura在参观该设施时告诉我:“FEL 光束的极高功率、较窄的光谱宽度以及其他特性使其非常适合用于未来的光刻技术。”直线加速器与激光等离子体当今的 EUV 系统仅由一家制造商制造, 即总部位于荷兰费尔德霍芬的ASML。当 ASML 于 2016 年推出第一代这种价值 1 亿美元以上的精密机器时,业界对它们的需求非常迫切。芯片制造商一直在尝试各种变通方法,以应对当时最先进的系统,即使用 193 纳米光的光刻技术。转向更短的 13.5 纳米波长是一场革命,它将减少芯片制造所需的步骤数量,并使摩尔定律在下一个十年继续有效。持续延迟的主要原因 是光源太暗。最终能够提供足够明亮的 EUV 光源的技术称为激光等离子体 (EUV-LPP)。它使用二氧化碳激光器每秒数千次将熔融的锡滴喷射成等离子体。等离子体发射出光子能量光谱,然后专用光学器件从光谱中捕获必要的 13.5 纳米波长,并将其引导通过一系列镜子。随后,EUV 光从图案化掩模上反射,然后投射到硅晶片上。KEK 的实验性紧凑型能量回收直线加速器利用电子返回过程中的大部分能量来加速一组新电子所有这些加起来就是一个高度复杂的过程。尽管它从耗电量高达千瓦的激光器开始,但反射到晶圆上的 EUV 光量只有几瓦。光线越暗,在硅片上可靠地曝光图案所需的时间就越长。如果没有足够的光子携带图案,EUV 的速度会不经济。而过分追求速度可能会导致代价高昂的错误。在刚机器刚推出时,功率水平足以每小时处理约 100 片晶圆。从那时起,ASML 已成功将当前系列机器的产量稳步提高到每小时约 200 片晶圆。ASML 目前的光源额定功率为 500 瓦。但 Nakamura 表示,未来需要更精细的图案,可能需要 1 千瓦或更高功率。ASML 表示,它有开发 1,000 瓦光源的路线图。但这可能很难实现,Nakamura 表示,他曾领导 KEK 的光束动力学和磁铁小组,退休后重新开始从事 EUV 项目。很难,但并非不可能。印第安纳州普渡大学极端环境下材料研究中心主任艾哈迈德·哈萨尼恩 (Ahmed Hassanein)表示,将光源功率翻倍“非常具有挑战性” 。但他指出,ASML 过去曾通过改进和优化光源和其他组件的综合方法实现了类似的高难度目标,他不排除重复这一做法的可能性。在自由电子激光器中,加速电子受到交变磁场的影响,导致它们波动并发射电磁辐射。辐射将电子聚集在一起,导致它们仅放大特定波长,从而产生激光束。但亮度并不是 ASML 在激光等离子源方面面临的唯一问题。“升级到更高的 EUV 功率时,存在许多挑战性问题,”Hassanein 说。他列举了几个问题,包括“污染、波长纯度和镜面收集系统的性能。”另一个问题是高昂的运营成本。这些系统每分钟消耗约 600 升氢气,其中大部分用于防止锡和其他污染物进入光学元件和晶圆。(不过,回收可以降低这一数字。)但最终,运营成本还是取决于电力消耗。弗吉尼亚州托马斯·杰斐逊国家加速器设施最近退休的高级研究员斯蒂芬·本森(Stephen Benson) 估计,整个 EUV-LPP 系统的电光转换效率可能不到 0.1%。他说,像 KEK 正在开发的这种自由电子激光器,其效率可能是前者的 10 到 100 倍。能量回收直线加速器KEK 正在开发的系统通过将电子加速到相对论速度,然后以特定方式偏离其运动来产生光。中村解释说,这个过程始于电子枪将电子束注入一根数米长的低温冷却管。在这个管子里,超导体发出射频 (RF) 信号,驱动电子越来越快地移动。然后电子旋转 180 度,进入一个叫做波荡器的结构,这是一系列方向相反的磁铁。(KEK 系统目前有两个。)波荡器迫使高速电子沿正弦路径运动,这种运动导致电子发光。在线性加速器中,注入的电子从射频场获得能量。通常,电子随后会进入自由电子激光器,并立即被处理到束流收集器中。但在能量恢复线性加速器 (ERL) 中,电子会回到射频场,并将其能量借给新注入的电子,然后再进入束流收集器。(文后附详细说明)接下来发生的现象称为自放大自发辐射(SASE:self-amplified spontaneous emissions)。光与电子相互作用,减慢一些电子的速度,加快另一些电子的速度,因此它们聚集成“微束”(microbunches),即沿波荡器路径周期性出现的密度峰值。现在结构化的电子束只放大与这些微束周期同相的光,从而产生相干的激光束。正是在这一点上,KEK 的紧凑型能量回收直线加速器 (cERL:compact energy recovery linac) 与传统直线加速器驱动的激光器有所不同。通常,耗尽的电子束是通过将粒子转移到所谓的束流 收集器中来处理的。但在 cERL 中,电子首先循环回到 RF 加速器。这束电子现在与刚开始旅程的新注入电子处于相反的相位。结果是耗尽的电子将大部分能量转移到新束流中,从而增强其能量。一旦原始电子的部分能量以这种方式耗尽,它们就会被转移到束流收集器中。“直线加速器中的加速能量被回收,与普通直线加速器相比,被丢弃的光束功率大幅降低,”中村向我解释道,而另一间屋子的科学家正在操作激光器。他说,重复使用电子的能量意味着,在同样的电量下,系统可以通过加速器发送更多的电流,并且可以更频繁地发射激光器。其他专家也同意这一观点。能量回收直线加速器的效率提高可以降低成本,“这是使用 EUV 激光产生等离子体的主要考虑因素”,Hassanein 说道。EUV 能量回收直线加速器KEK 紧凑型能量回收直线加速器最初于 2011 年至 2013 年间建造,旨在向该机构物理和材料科学部门的研究人员展示其作为同步辐射源的潜力。但研究人员对计划中的系统并不满意,因为它的性能目标低于一些基于存储环的同步加速器(巨大的圆形加速器,可保持电子束以恒定的动能移动)所能达到的水平。因此,KEK 研究人员开始寻找更合适的应用。在与当时拥有闪存芯片部门的东芝等日本科技公司交谈后,研究人员进行了初步研究,证实使用紧凑型能量回收直线加速器可以实现千瓦级光源。因此,EUV 自由电子激光器项目诞生了。2019 年和 2020 年,研究人员修改了现有的实验加速器,开始了 EUV 光之旅。该系统被安置在一个全混凝土房间内,以保护研究人员免受运行时产生的强烈电磁辐射。房间长约 60 米,宽约 20 米,大部分空间被复杂的设备、管道和电缆所占据,这些设备、管道和电缆沿着房间两侧蜿蜒而行,形成一条细长的赛道。该加速器目前还无法产生 EUV 波长。借助 17 兆电子伏特的电子束能量,研究人员能够以 20 微米红外光爆发的形式产生 SASE 辐射。早期测试结果于 2023 年 4 月发表在《日本应用物理学杂志》上。下一步工作正在进... PC版: 手机版:

封面图片

ASML首台高数值孔径EUV光刻机已创下新的芯片制造密度记录

ASML首台高数值孔径EUV光刻机已创下新的芯片制造密度记录 他概述了一项计划,通过大幅提高未来 ASML 工具的速度到每小时 400 到 500 个晶圆 (wph),这是目前 200 wph 峰值的两倍多,从而降低 EUV 芯片制造成本。他还为 ASML 未来的 EUV 工具系列提出了一种模块化统一设计。Van der Brink 表示,经过进一步调整,ASML 现已使用其开创性的高数值孔径 EUV 机器打印出 8nm 密集线条,这是专为生产环境设计的机器的密度记录。这打破了该公司在 4 月初创下的记录,当时该公司宣布已使用位于荷兰费尔德霍芬 ASML 总部与 imec 联合实验室的开创性高 NA 机器打印出 10nm 密集线条。从长远来看,ASML 的标准低 NA EUV 机器可以打印 13.5nm 的临界尺寸(CD可以打印的最小特征),而新的High NA EXE:5200 EUV 工具旨在通过打印 8nm 特征来制造更小的晶体管。因此,ASML 现在已经证明其机器可以满足其基本规格。“今天,我们已经取得了进展,能够显示创纪录的 8nm 成像,在整个视野范围内得到校正,但也有一定程度的重叠,”Van der Brink 说道,“顺便说一句,这不是完美的数据,但它只是为了向你展示进展。今天,我们有信心,凭借High NA 技术,我们将能够在未来的时间里跨越到终点线。”这一里程碑代表了 10 多年的研发和数十亿欧元投资的成果,但仍有更多工作要做,以优化系统并为主要芯片制造商的大规模生产做好准备。这项工作已经在荷兰开始,而英特尔是已知唯一一家已经完全组装High NA 系统的芯片制造商,它正紧随 ASML 的脚步,在俄勒冈州的 D1X 工厂投入运营自己的机器。英特尔将首先将其 EXE:5200 High NA 机器用于研发目的,然后将其投入生产 14A 节点。Van der Brink 还再次提出了一种新的超数值孔径 EUV 机器,但尚未对该机器做出最终决定ASML 似乎正在衡量行业兴趣,但只有时间才能证明它是否会实现。当今的标准 EUV 机器使用波长为 13.5nm 且数值孔径 (NA收集和聚焦光的能力的量度) 为 0.33 的光。相比之下,新的高数值孔径机器使用相同的光波长,但采用 0.55 NA 来打印更小的特征。Van der Brink 提出的超数值孔径系统将再次使用相同波长的光,但将 NA 扩大到 0.75,以能够打印更小的特征。我们不确定提议的临界尺寸,但上面的 ASML 晶体管时间线显示它正在 16nm 金属间距(A3 节点)处拦截并延伸到 10nm(A2 以下节点)。根据上述路线图,Hyper-NA 可能适用于单次曝光 2DFET 晶体管,但目前尚不清楚使用 High-NA 和多重曝光是否也能产生如此精细的间距。如您在上面的第一张幻灯片中看到的,这台机器要到 2033 年左右才会问世。今天的 High-NA 机器已经花费了大约 4 亿美元。由于需要更大、更先进的镜子和改进的照明系统,Hyper-NA 将是一个更昂贵的选择。与其前代产品一样,Hyper-NA 的目标是通过单次曝光打印更小的特征,以避免多重曝光技术(同一区域的多次曝光),这些技术往往会增加芯片制造过程的时间和步骤,同时也会增加出现缺陷的可能性,所有这些都会增加成本。Van Der Brink 表示,继续开发光刻机和先进掩模将是提高印刷特征分辨率的关键。Hyper-NA 还将使用改进的照明系统以获得最佳效果。ASML 没有详细说明,但可以合理地认为,改进后的照明器将与更高功率的光源配对,以帮助增加剂量,以抵消 0.75 NA 使用的更高镜面角度并提高产量。Van der Brink 还提议将公司未来机器的产量从目前的约 200 wph 提高到未来的 400 到 500 wph。这是 ASML 可以控制成本的另一个杠杆,从而对抗每一代新芯片中每个晶体管价格上涨的趋势。为了加快开发速度并降低成本,ASML 已经使用其现有的Low NA Twinscan NXE:3600 EUV 机器作为其新High NA 机器的构建模块。ASML 的Low NA 型号采用模块化设计,使该公司能够利用成熟的技术和模块为其新工具服务,并且该公司只在需要时添加新模块。但是,还有更多优化空间。Van der Brink 认为,在未来十年内,该公司在创建新工具时将加倍采用模块化设计理念。拟议的长期路线图显示,Low NA、High NA 和Hyper NA 都具有越来越通用的模块化平台和共享组件。这种设计是 ASML 可以控制成本的另一个杠杆。芯片行业似乎拥有通过使用Low NA 和High NA 工具构建的全栅极 (GAA) 和互补场效应晶体管 (CFET) 的坚实未来发展跑道,但除了超 NA 之外,还没有真正的候选者站出来可能实现未来几代工艺节点技术。与往常一样,成本是关键因素,但 ASML 显然已经在考虑如何让 Hyper-NA 定价方程对其客户更具吸引力。台积电改变心意?台积电先前一再表示,阿斯麦( ASML)的高数值孔径极紫外光机台(High-NA EUV),太过昂贵,2026年前使用没有太大的经济效益,但日前台积电总裁魏哲家密访ASML总部,让外界不禁猜测,台积电是否改变心意。综合科技媒体wccftech和韩媒BusinessKorea报导,消息人士指出,魏哲家缺席23日登场的台积电2024年技术论坛台湾场,于26日造访了ASML荷兰总部,以及工业雷射公司创浦(TRUMPF)的德国总部。金融分析师奈斯泰德(Dan Nystedt) 28日在X平台发文写道,台积电似乎加入了追逐下一世代EUV设备之战,即High-NA EUV机台,理由是魏哲家访问ASML与雷射供应商创浦,而非参与在台湾举行的技术论坛。业界推断,魏哲家的到访,显示台积电想买High-NA EUV,此种设备对2纳米以下制程极为关键。ASML去年底已出货首台High-NA EUV给英特尔。分析指出,台积电管理层似乎决定拜访ASML,确保全球半导体的主导地位。台积电原本打算2026年下半量产1.6纳米制程后,再导入High-NA EUV。High-NA EUV 设备报价高达3.8亿美元,约新台币123亿元,较EUV高出逾一倍。台积电的竞争对手英特尔和三星电子,都已有所行动。英特尔想借着High-NA EUV,达到难以超越的领先优势。最先出货的几台High-NA EUV,都送往英特尔的晶圆代工部门。英特尔想先在1.8纳米试用此种设备,之后正式导入于1.4纳米制程。三星集团会长李在镕则已在4月亲访ASML关键伙伴蔡司的德国总部,拜会ASML执行长傅凯与蔡司执行长兰普雷希特,以强化三方的半导体联盟。 ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人