发现了个好东西,这个老哥开源了一门课程《从头开始构建大型语言模型》,这门课程将一步步地指导你创建自己的LLM。#AI# #llm

发现了个好东西,这个老哥开源了一门课程《从头开始构建大型语言模型》,这门课程将一步步地指导你创建自己的LLM。#AI# #llm# 每个阶段都有清晰的文本、图表和实例来解释相关概念。 课程内容包括: 1. 从基础理解注意力机制 2. 构建并预训练一个类似于GPT的模型 3. 学习如何加载预训练的权重 4. 对模型进行分类任务的微调 5. 使用直接偏好优化进行指令微调模型 课程地址:

相关推荐

封面图片

cohere的大型语言模型(LLM)课程 | 课程从基础开始,涵盖了建立和使用文本表示和文本生成模型的所有内容。

cohere的大型语言模型(LLM)课程 | 课程从基础开始,涵盖了建立和使用文本表示和文本生成模型的所有内容。 理论部分以类比和实例而不是公式进行解释,实践部分包含大量有用的代码示例,帮你巩固知识。 课程内容包括:大型语言模型是如何工作的、LLM有什么用、如何使用LLM构建和部署应用等。

封面图片

大语言模型(LLM)微调技术笔记 || #笔记

大语言模型(LLM)微调技术笔记 || #笔记 在预训练后,大模型可以获得解决各种任务的通用能力。然而,越来越多的研究表明,大语言模型的能力可以根据特定目标进一步调整。这就是微调技术,目前主要有两种微调大模型的方法 1:指令微调,目标是增强(或解锁)大语言模型的能力。 2:对齐微调,目标是将大语言模型的行为与人类的价值观或偏好对齐。

封面图片

教你从零开始构建类似 ChatGPT 的大语言模型。

教你从零开始构建类似 ChatGPT 的大语言模型。 在 GitHub 上发现一本《Build a Large Language Model (From Scratch)》书籍。 作者将带你从头开始构建一个类似 GPT 语言模型,这过程让你了解如何创建、训练和微调大型语言模型 (LLMs)! 书籍主要分为 8 大章节,如下: 第 1 章:了解大语言模型(LLM)解析 第 2 章:介绍文本数据处理技巧 第 3 章:通过编程实现注意力机制(Attention Mechanisms) 第 4 章:从零开始实现类似 GPT 模型 第 5 章:对未标注数据进行预训练 第 6 章:针对文本分类的模型微调 第 7 章:结合人类反馈进行模型微调 第 8 章:在实践中使用大语言模型 书籍前两章内容已出,剩下的会逐步放出。 |

封面图片

本项目旨在构建一个小参数量的llm,走完预训练 -> 指令微调 -> 奖励模型 -> 强化学习 四个阶段,以可控的成本完成一个可

本项目旨在构建一个小参数量的llm,走完预训练 -> 指令微调 -> 奖励模型 -> 强化学习 四个阶段,以可控的成本完成一个可以完成简单聊天任务的chat模型,目前完成前两个阶段。 使用bert4torch训练框架,代码简洁高效; 训练的checkpoint可以无缝衔接transformers,直接使用transformers包进行推理; 优化了训练时候文件读取方式,优化内存占用; 提供了完整训练log供复现比对; 增加自我认知数据集,可自定义机器人名称作者等属性。 chat模型支持多轮对话。

封面图片

《卢菁博士AI大模型微调实战训练营》

《卢菁博士AI大模型微调实战训练营》 简介:《卢菁博士AI大模型微调实战训练营》由卢菁博士主讲,是专注于AI大模型微调的实战课程。课程详细介绍AI大模型微调的原理、方法和技巧,通过实际案例和项目,指导学员掌握如何根据具体任务需求对预训练大模型进行微调,以提高模型性能和应用效果,适合AI开发者、数据科学家等专业人士学习 标签:#AI大模型#模型微调#实战训练#AI开发#数据科学 文件大小:NG 链接:https://pan.quark.cn/s/46ad619b27b7

封面图片

TencentPretrain:腾讯预训练模型框架

TencentPretrain:腾讯预训练模型框架 预训练已经成为人工智能技术的重要组成部分,为大量人工智能相关任务带来了显著提升。TencentPretrain是一个用于对文本、图像、语音等模态数据进行预训练和微调的工具包。TencentPretrain遵循模块化的设计原则。通过模块的组合,用户能迅速精准的复现已有的预训练模型,并利用已有的接口进一步开发更多的预训练模型。通过TencentPretrain,我们建立了一个模型仓库,其中包含不同性质的预训练模型(例如基于不同模态、编码器、目标任务)。用户可以根据具体任务的要求,从中选择合适的预训练模型使用。TencentPretrain继承了的部分工作,并在其基础上进一步开发,形成支持多模态的预训练模型框架。 TencentPretrain有如下几方面优势: 可复现 TencentPretrain已在许多数据集上进行了测试,与原始预训练模型实现(例如BERT、GPT-2、ELMo、T5、CLIP)的表现相匹配 模块化 TencentPretrain使用解耦的模块化设计框架。框架分成Embedding、Encoder、Target等多个部分。各个部分之间有着清晰的接口并且每个部分包括了丰富的模块。可以对不同模块进行组合,构建出性质不同的预训练模型 多模态 TencentPretrain支持文本、图像、语音模态的预训练模型,并支持模态之间的翻译、融合等操作 模型训练 TencentPretrain支持CPU、单机单GPU、单机多GPU、多机多GPU训练模式,并支持使用DeepSpeed优化库进行超大模型训练 模型仓库 我们维护并持续发布预训练模型。用户可以根据具体任务的要求,从中选择合适的预训练模型使用 SOTA结果 TencentPretrain支持全面的下游任务,包括文本/图像分类、序列标注、阅读理解、语音识别等,并提供了多个竞赛获胜解决方案 预训练相关功能 TencentPretrain提供了丰富的预训练相关的功能和优化,包括特征抽取、近义词检索、预训练模型转换、模型集成、文本生成等 ||#框架

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人