《等离子体物理 》

《等离子体物理 》 简介:研究电离气体在高能状态下的行为与特性,涉及带电粒子间的电磁相互作用及集体运动规律。作为物质第四态,广泛存在于恒星、闪电、人造核聚变装置中,其控制技术对能源开发、航天推进、材料加工等领域具有革命性意义。 亮点:前沿领域聚焦可控核聚变实现清洁能源,星际等离子体研究推动深空探测发展,工业应用涵盖芯片刻蚀与废物处理。基础理论融合流体力学与电磁学,依赖超级计算机进行粒子动力学模拟。 标签:#物质第四态 #电磁流体力学 #核聚变能源 #深空等离子体 #工业应用科技 链接:https://pan.quark.cn/s/fba0df2c8014

相关推荐

封面图片

科学简单点:什么是等离子体?

科学简单点:什么是等离子体? 在等离子体中,一些电子从中性原子(质子和电子数目相等,因此带中性电荷的原子)中分离出来,成为自由电子。由此产生的自由电子使等离子体不同于其他物质状态,在其他物质状态下,电子仍然紧紧地与原子核结合在一起。当等离子体中的原子与带负电荷的电子分离时,它们就不再带有中性电荷。相反,原子变成了离子带正电的粒子。因此,等离子体是一种由带正电荷的离子和带负电荷的电子组成的电离状态。极光是由地球大气等离子体中的粒子碰撞形成的。资料来源:弗兰克-奥尔森原子中的电子能够分离并形成等离子体有几个原因。在实验室实验中,科学家可以用高压电、激光或电磁场轰击原子,从而形成等离子体。在太空中,高能光子(包括伽马射线)撞击原子也会形成等离子体。在太空中,当重力使压力剧增,从而使气体过热时,也会形成等离子体。高温使原子相互碰撞,导致电子从原子中分离,形成等离子体和恒星的雏形。气体过热产生等离子体的过程表明,气体和等离子体之间的关系类似于液体是固体的加热形式。这种类比并不总是正确的。首先,与气体不同,等离子体可以导电。此外,在气体中,所有粒子的行为方式都相似。然而,在等离子体中,电子和离子的行为和相互作用方式非常复杂,从而产生了波和不稳定性。等离子体有多种类型。宇宙中的大多数等离子体被研究人员称为高温等离子体。在这些高温等离子体中,温度可以超过华氏 1 万度,所有原子都可以完全电离。低温等离子体则不同。原子只是部分电离,温度低得惊人,甚至只有室温。另一种不寻常的等离子体是高能量密度等离子体,科学家在实验室中制造这种等离子体来研究它们的不寻常特性。总结:有一种闪电球状闪电是等离子体。从马克斯-普朗克研究所了解更多信息。极光也是由等离子体造成的。在本科学集锦中了解更多信息。封闭等离子体是设计聚变托卡马克和恒星器设备的重要步骤,这些设备最终可能为我们提供聚变动力。高能量密度等离子体科学实现了实验室条件下的聚变点火。研究等离子体有助于科学家了解物质。这也有助于他们向聚变能源的目标迈进。能源部(DOE)科学办公室通过聚变能源科学和核物理计划支持等离子体研究。能源部资助的等离子体研究还改进了从手机、电脑到汽车等各种产品中的半导体制造。等离子体方面的专业知识帮助能源部国家实验室的研究人员开发出了逐原子控制半导体制造的方法。编译来源:ScitechDaily相关文章:科学简单点:什么是超级计算?科学简单点:什么是人工智能?科学简单点:什么是量子力学?科学简单点:什么是水力发电?科学简单点:什么是核能?科学简单点:什么是气候复原力?科学简单点:什么是纳米科学?科学简单点:什么是暗物质和暗能量?科学简单点:什么是 X 射线光源?科学简单点:什么是自主发现?科学简单点:什么是氢能源?科学简单点:什么是“关键材料” 美国政府定义了多少种? ... PC版: 手机版:

封面图片

了解快速离子碰撞:聚变反应堆中的离子和波的“芭蕾舞”

了解快速离子碰撞:聚变反应堆中的离子和波的“芭蕾舞” 核聚变实验中快速离子(黑色螺旋)与等离子体波(彩色)相互作用的示意图。资料来源:史蒂夫-艾伦(劳伦斯-利弗莫尔国家实验室),由迈克-范-泽兰(通用原子公司)改编在等离子体中,"冲浪者"可能是速度非常快的离子,它们可能出现在核聚变装置中,是核聚变反应或用于加热等离子体的其他过程的结果。这些快速离子的作用通常与海洋中的冲浪者相反它们为海浪提供能量,使海浪变大。当共振粒子与波浪交换能量时,它们也会通过随机碰撞受到等离子体中其他粒子的挤压。这些碰撞的类型和发生频率决定了波浪的大小和粒子的晃动程度。如果波浪过大或过多,就会把冲浪粒子踢出装置,对墙壁造成潜在危险,同时也会减少聚变能的产生量。聚变反应堆的挑战聚变反应堆中的等离子体必须不断加热,以保持产生能量所需的温度。然而,加热等离子体的快速离子也会与等离子体中的波产生共振。这会导致这些波的增长,并有可能将快速离子踢出装置。研究人员需要了解快速离子与等离子体波之间的共振相互作用,以预测和减轻任何不利影响。这项研究将数学计算与计算机模拟相结合,揭示了不同类型的碰撞如何通过竞争来决定共振粒子与等离子体波之间的能量传递方式。研究人员正在利用这一新的认识来制定如何保持等离子体足够热以维持核聚变反应的模型。共振波粒等离子体问题还与星系中的某些引力相互作用有关。这意味着该项目的方法可以应用于天体物理研究,包括暗物质研究。了解快速离子碰撞在核聚变实验中,快速离子通过与电子碰撞,将其能量传递给背景等离子体,从而使等离子体保持足够的热量进行核聚变。碰撞有两种不同类型:扩散散射和对流阻力。扩散碰撞与台球桌上的台球散射是同一类型。与此同时,当把手伸出行驶中的汽车窗外时,你会感觉到阻力碰撞。根据快离子的速度和等离子体的温度,每种碰撞都会对快离子的行为产生更大的影响。具体来说,快离子速度越大,阻力越大,而等离子体温度越高,扩散越有利。在快速离子通过碰撞加热背景等离子体的同时,它们也会与等离子体波发生共振作用,而等离子体波会消耗它们的能量,从而有可能冷却等离子体。在没有任何碰撞的情况下,只有当粒子的速度与波的速度完全匹配时,才会发生快离子与波之间的共振。科学家们早就知道,扩散碰撞的作用是"抹去"共振,即使粒子的速度比波的移动速度稍快或稍慢,它们也能有效地与波进行能量交换。这项研究的新发现是,当阻力存在时,这种碰撞会改变共振发生的速度,这意味着当快离子和等离子体波的速度相差很小时,能量交换实际上是最有效的。共振功能的作用在这项研究中,研究人员用一种名为共振函数的数学对象来描述波粒相互作用强度的特征,共振函数取决于波速和粒速之间的差值。当阻力碰撞比扩散碰撞发生得更频繁时,就会出现更奇特的现象在全新的速度下,有效的能量传递成为可能。这种现象实际上产生了新的共振,而在没有阻力的情况下,这种共振是根本不存在的,表现为共振函数中出现新的峰值,并扩大了共振相互作用的范围。完全从理论上推导出的共振函数决定了从共振快离子中获取自由能后波浪会变得有多大,也决定了这些粒子会如何被波浪踢来踢去。非线性计算机模拟结果与理论预测非常吻合,证实了推导出的共振函数对这两种碰撞的任何组合都是有效的,并加深了我们对碰撞如何影响等离子体中共振波与粒子相互作用的基本理解。基本理论得到验证后,现在可以放心地将其用于改进用于模拟快速离子在聚变装置中的行为的代码,这是开发商业聚变发电厂道路上的关键一步。编译自/ScitechDaily ... PC版: 手机版:

封面图片

中核集团:中国掌握可控核聚变高约束先进控制技术

中核集团:中国掌握可控核聚变高约束先进控制技术 8月25日下午,新一代人造太阳“中国环流三号”取得重大科研进展,首次实现100万安培等离子体电流下的高约束模式运行,再次刷新我国磁约束聚变装置运行纪录,突破了等离子体大电流高约束模式运行控制、高功率加热系统注入耦合、先进偏滤器位形控制等关键技术难题,是我国核聚变能开发进程中的重要里程碑,标志着我国磁约束核聚变研究向高性能聚变等离子体运行迈出重要一步。  为实现聚变能源,需要提升等离子体综合参数至聚变点火条件。磁约束核聚变中的高约束模式(H模)是一种典型的先进运行模式,被选为正在建造的国际热核聚变试验堆(ITER)的标准运行模式,能够有效提升等离子体整体约束性能,提升未来聚变堆的经济性,相较于普通的运行模式,其等离子体综合参数可提升数倍。

封面图片

403秒!中国“人造太阳”获重大突破

403秒!中国“人造太阳”获重大突破 第122254次实验!4月12日21时,中国有“人造太阳”之称的全超导托卡马克核聚变实验装置(EAST)创造新的世界纪录,成功实现稳态高约束模式等离子体运行403秒,对探索未来的聚变堆前沿物理问题,提升核聚变能源经济性、可行性,加快实现聚变发电具有重要意义。 “这次突破的主要意义在于‘高约束模式’。”中科院合肥物质科学研究院副院长、等离子体物理研究所所长宋云涛说,高约束模式下粒子的温度、密度都大幅度提升,“这为提升未来聚变电站的发电效率,降低成本奠定了坚实物理基础。” 来自:雷锋 频道:@kejiqu 群组:@kejiquchat 投稿:@kejiqubot

封面图片

聚变的未来:用人工智能的精度解开复杂物理学的谜团

聚变的未来:用人工智能的精度解开复杂物理学的谜团 等离子体建模与实验之间的桥梁为此,研究人员展示了一种连接等离子体建模和实验的新方法。研究人员利用常规安装在聚变装置中的带有光学滤镜的相机拍摄的照片,开发出了一种推断电子密度和温度波动的技术。聚变科学家可以在实验中利用这些信息,以符合理论的方式预测等离子体场。利用来自托卡马克中等离子体边缘的光线(左侧为内部视图),物理信息神经网络重建了等离子体密度和温度的湍流波动以及探测氦气泡的分布(右侧)。作者:A. Mathews、J. Hughes 和 J. Mullen预测建模面临的挑战聚变实验中等离子体湍流的预测建模具有挑战性。这是因为很难对这些混沌系统的边界条件进行建模。研究人员利用定制的物理信息机器学习方法,开发了一个框架,能够直接求解核聚变实验装置边界通常无法解决的等离子体特性。这使科学家们能够预测等离子体波动在实验中的表现。这也使他们能够以符合理论的方式测试预测模型。这种湍流建模以前并不实用。聚变等离子体中约束的重要性聚变等离子体的充分约束对于实现净聚变能量生产的目标至关重要。预测约束的一个关键要素是了解等离子体的不稳定性如何导致聚变装置内的冷却和性能损失。因此,聚变界花了几十年的时间来提高实验的测量能力,以完善预测模型。然而,聚变所需的极端温度和真空条件使得在聚变装置内部署诊断设备非常困难。麻省理工学院的研究人员最近针对这一挑战发表了两篇论文。麻省理工学院的创新研究在第一篇论文中,研究人员展示了如何利用一种新颖的、以物理学为基础的人工智能框架,将实验数据与辐射建模和动力学理论相结合,将常用快速相机收集的光子计数转换为湍流尺度上的电子密度和温度波动。其结果是对以前未观察到的等离子体动力学的新颖实验见解。在第二篇论文中,研究小组利用这些电子动态信息,结合广泛使用的等离子体湍流理论,在实验环境中直接预测出与偏微分方程相一致的电场波动。这项工作超越了传统的数值方法,而是利用专门创建的物理信息神经网络架构,为等离子体的非线性特性开发了一种新型建模方法。这项工作为了解理论预测是否与观测结果相匹配开辟了新的科学途径。参考资料A. Mathews、J. L. Terry、S. G. Baek、J. W. Hughes、A. Q. Kuang、B. LaBombard、M. A. Miller、D. Stotler、D. Reiter、W. Zholobenko 和 M. Goto 的《来自气泡湍流成像的等离子体和中性波动深度建模》,2022 年 6 月 16 日,《科学仪器评论》。doi: 10.1063/5.0088216《基于边界湍流实验图像的漂移还原布拉金斯基理论与等离子体-中性相互作用的深电场预测》,作者:A. Mathews、J. W. Hughes、J. L. Terry 和 S. G. Baek,2022 年 12 月 2 日,《物理评论快报》。DOI: 10.1103/PhysRevLett.129.235002编译来源:ScitechDaily ... PC版: 手机版:

封面图片

新型钨反应堆让核聚变更接近现实

新型钨反应堆让核聚变更接近现实 对于那些不熟悉托卡马克的人来说,它本质上是一个甜甜圈形状的装置,利用强大的磁场来容纳和控制等离子体一种极热、带电的气态混合物,对于复制恒星中的聚变反应至关重要。由法国替代能源和原子能委员会(CEA)运营的 WEST(稳态托卡马克中的钨环境)反应堆处于这项研究的最前沿。这一突破取决于钨的使用,钨是灯泡灯丝中常见的灰白色金属。这种金属以其卓越的耐热性能而著称,能使等离子体达到难以置信的高温和高密度,而不会导致腔壁熔化。在创纪录的运行过程中,研究小组向 WEST 注入了 1.15 千兆焦耳的能量,使等离子体在大约 5000 万摄氏度的高温下持续燃烧,其温度是太阳核心温度的三倍多。普林斯顿等离子体物理实验室(PPPL)提供了专门的 X 射线诊断工具,用于精确测量 WEST 内的强等离子体条件,在这一成就中发挥了至关重要的作用。据普林斯顿等离子体物理实验室的路易斯-德尔加多-阿帕里西奥(Luis Delgado-Aparicio)说:"等离子体聚变界是最早利用混合光子计数技术监测等离子体动态的机构之一。"法国原子能委员会科学家泽维尔-利塔乌东(Xavier Litaudon)解释了为什么钨托卡马克的这一成就是如此重大的突破。"我们需要提供一种新的能源,而且这种能源应该是持续和永久的"。核聚变可以成为改变游戏规则的能源一种几乎取之不尽、用之不竭的清洁能源,没有任何放射性废物或碳排放。然而,要实现自持聚变反应,使其产生的能量大于消耗的能量,是一项巨大的挑战。从超高温等离子体中提取比启动和维持核聚变过程所需更多的能量,需要极高的温度和极长的约束时间。这就是为什么最近在 WEST 取得的突破如此令人期待。正如协调该实验的雷米-杜蒙(Remi Dumont)简明扼要地指出的那样"一个惊人的结果"。虽然人类的核聚变能源梦想还需要数年或数十年的时间才能实现,但像这样的里程碑式事件表明,我们正在一步步地接近它。主要的参与者也在加倍努力实现核聚变的承诺。微软公司与 Helion 公司合作,计划在 2028 年之前开发出商业核聚变技术,而日本则在去年推出了大型 JT-60SA 托卡马克反应堆一个六层楼高的庞然大物,旨在破解核聚变约束难题。与此同时,扩大这种新型钨反应堆的规模,可以使人们期待已久的核聚变未来更加清晰。 ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人